

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

D2.2 Architecture Requirements and
Definition (v1)

WP2 System Requirements, Architecture Specification and
Implementation

Page 2 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Document information

Project Identifier ECSEL-2017-783221

Project Acronym AFarCloud

Project Full Name Aggregate Farming in the Cloud

Document Version 1.0

Planned Delivery Date M12 (August 2019)

Actual Delivery Date M12 (August 2019)

Deliverable Name D2.2 Architecture Requirements and Definition

Work Package WP2 System Requirements, Architecture Specification

and Implementation

Task T2.2 Architecture Requirements and Definition

Document Type Report

Dissemination level Public

Abstract This document contains the functional and non-functional

architectural requirements of the AFarCloud platform and

the design of the architecture.

Document History

Version Date Contributing

partner

Contribution

0.1 19th October 2018 TECN,

ROVIMATICA,

UPM, HUA, ITAV,

HI-IBERIA

Contribution to scenario requirements, data

requirements and messages

0.2 25th October 2018 TECN, DAC, TST,

TTC, UPM, AVL,

AVL-CD, AMS,

UWB, AIT

Contribution to scenario requirements and

data requirements

Page 3 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 0.3 19th November 2018 UWB,

ROVIMATICA,

UNIPR, INTRA

Update of requirements (UNIPR)

Cloud services requirements (INTRA)

Update of value ranges in the 2.3 Livestock

data table and addition of butyric and lactic

acid concentrations (UWB)

High-performance image processing platform

(ROVIMATICA);

0.4 30th November 2018 MDH, BOSIT, HUA,

TTC, TECN

Update of requirements

0.5 23th January 2019 AVL-CD, ROTEC,

UPM, HUA,

PDMFC, BEV,

APP4M, ACREO

Update of livestock data with more specific

information. (UPM)

Update of requirements:

- vehicle, security and development

requirements (AVL-CD)

- requirements and guidelines (ROTEC)

- security and distributed intelligence

(HUA)

Requirements updates, WSNs, UAVs

(PDMFC, BEV, APP4M)

Sensors (ACREO)

0.6 28th January 2019 TECN, UPM, HUA,

AVL-CD, ROTEC,

ROVI, ESTE,

INTRA, AIT,

CENTRIA, UNIVAQ,

EXODUS, NXP,

RISE ACREO,

SPACEMETRIC,

AMS, IMAG

General architecture

Update in data requirements from data

provided by sensors

Update of middleware diagram (TECN)

0.7 26th February 2019 AMS, HUA, TECN,

MDH

Update to 7.5 (AMS)

Update of 3.5. Ground Vehicle data (HUA,

TECN)

Mission Management Tool description (MDH)

0.8 1st March 2019 TECN, HUA Update of 3.5 Ground Vehicle data, AUV data

(HUA)

Update of middleware architecture (TECN)

Page 4 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 0.9 4th March 2019 TECN Update of the interfaces of the Image

Processing Platform (TECN)

Update of the interfaces of the FMS and the

Middleware (TECN)

0.10 29th March 2019 BOSIT, TECN Added draft descriptions to cloud repositories

and access to third-party data (BOSIT).

Update of the list and description of the

middleware components, update of the

middleware architecture and components

diagram, new data flow diagrams added

(TECN).

0.11 4th April 2019 IMAG, UPM, TECN,

MDH

Update of Annex1: LoRa WAN features,

MQTT and MQTT-SN descriptions. (IMAG)

Description of the Mission Processing &

Reporter and the Mission Manager (UPM).

Update of the description of the general

description of the architecture components

(TECN), update of the MMT description

(MDH)

0.12 9th April 2019 TECN, CUNI Update of the description the architecture

components (TECN), update of MMT

description (CUNI)

0.13 17th April 2019 TECN Update of the description of the architecture

components, update of the data flow between

components

0.14 24rd April 2019 TECN Semantic middleware figure update. New data

flow diagram for REST compatible devices.

Description of DDS Manager.

0.15 30th April 2019 TST, TECN, ITAV MQTT Broker/Clients description (general

topic, QoS settings, fw updates) (TST),

update of DDS Manager and Environment

Reporter. New cloud resources monitoring

requirements (TECN). Env. Reporter

specification (ITAV)

Page 5 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 0.16 14th May 2019 ITAV, TECN, BEV,

AMS

Description of Knowledge Extractor and Data

Pre-Processor (ITAV). Distinction between

Cloud Data Storage and Edge Data Storage.

Definition of different architecture options for

UAVs. Description of legacy systems

databases. Proposal for specific MQTT topics

(TECN), Proposal for fw updates over MQTT

(AMS, TST). Integration of multi-hop WSNs

(ROTEC). Update of development

requirements (BEV, AVL), cloud resources

monitoring requirements (TECN, CUNI)

0.17 15th May 2019 TECN, DAC, HUA,

BEV, PDMFC

Updates in the System Configuration module

in the FMS. Updates in MQTT Broker/Clients.

Cloud Resources Monitoring. Summary of the

data model in Annex 2 (TECN). Streaming

Engine (DAC). Updates in REST services and

Distributed Intelligence Requirements (HUA,

TECN). Updates in UAV (BEV, PDMFC). Data

Access Manager and Data Query (HIB)

0.18 24th May 2019 ITAV, TECN, BEV,

AIT, UNIPR, TST,

PDMFC, UPM

Update in Environment Reporter (ITAV),

update in Data Flow Diagrams (TECN).

Revision and update of requirements to new

table structure: vehicle req (BEV, TECN),

security and development req (AIT),

communication req (UNIPR), sensor req

(TST), cloud services req (PDMFC), general

req (UPM), Image Data Manager (SM)

0.19 27th May 2019 TECN, TST, MDH,

AIT, ROVI

Update of general req (TECN), HMI req.

(MDH), vehicle req. (ROVI), MQTT

Broker/Clients (TST, TECN), Device Manager

(TECN), cyber-security management (AIT)

0.20 10th June 2019 ROVI, TECN, BEV,

PDMFC

Diagrams updated for: architecture,

middleware and data flow for devices sending

data to the platform (TECN), Computer Vision

Platform module renamed to Image

Processing Platform and contents updated

(ROVI, TECN), update of the Image Data

Page 6 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Manager (TECN), update of Data Pre-

processor and Data Fusion (BEV, PDMFC).

0.21 19thJune 2019 TECN, ITAV, ROVI,

MTECH, SINTEF,

UPM, VTT, RISE

ACREO

Update of the middleware diagram (TECN),

update of ER, DPP, DF and KE (ITAV, TECN),

REST Services and Data Models for IPP

(ROVI), description of CDX usage (MTECH),

update of device registry (TECN, UPM),

update of livestock data (UPM), update of soil

data with measured grass values (VTT),

internal review of scenarios requirements

(SINTEF, RISE ACREO).

0.22 25th June 2019 TECN, INTRA, MDH Update of REST services description (TECN),

update of the System Configuration in the

FMS (INTRA, MDH), update of the interfaces

of the AFarCloud platform (TECN).

0.23 02nd July 2019 ITAV, MDH Update of the Environment Reporter, the Data

Pre-Processor, the Data Fusion and the

Knowledge Extractor (ITAV), update of the

Farm Management System section (MDH).

0.24 5th July 2019 TECN, APPS4 First version for internal review

0.25 30th July 2019 MDH, BEV, RISE Updates based on comments from internal

reviewers; updates on sensor requirements

1.0 1st August 2019 TECN Version 1

Document Contributors

Partner name Partner member e-Mail

TECNALIA Sonia Bilbao sonia.bilbao@tecnalia.com

TECNALIA Belén Martínez belen.martinez@tecnalia.com

TECNALIA Leire Orue-Echevarria Leire.Orue-Echevarria@tecnalia.com

TECNALIA Fernando Jorge Hernandez fernando.jorge@tecnalia.com

ROVIMATICA Miguel A. Aragón miguel.aragon@rovimatica.com

mailto:sonia.bilbao@tecnalia.com
mailto:belen.martinez@tecnalia.com
mailto:fernando.jorge@tecnalia.com
mailto:miguel.aragon@rovimatica.com

Page 7 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 ROVIMATICA Patricio Alemany patricio.alemany@rovimatica.com

UPM Jesús Rodríguez jesus.rodriguezm@upm.es

HUA Vassilis Dalakas vdalakas@hua.gr

HUA Anargyros Tsadimas tsadimas@hua.gr

HUA Dimosthenis Anagnostopoulos dimosthe@hua.gr

HUA Mara Nikolaidou mara@hua.gr

HUA George Dimitrakopoulos gdimitra@hua.gr

ITAV Joaquim Bastos jbastos@av.it.pt

IPB Luís Miguel Pinheiro da Luz luisluz@ipbeja.pt

HI-IBERIA Inmaculada Luengo iluengo@hi-iberia.es

HI-IBERIA Gaia Rubio grubio@hi-iberia.es

DAC Bartosz Jachimczyk bartosz.jachimczyk@dac.digital

TST Arturo Medela amedela@tst-sistemas.es

TTC Martijn Rooker martijn.rooker@tttech.com

AVL Patrik Maier Patrik.Maier@avl.com

AVL Bernhard Frohner Bernhard.Frohner@avl.com

AVL Zhendong Ma Zhendong.Ma@avl.com

AVL-CD Daniel Puckmayr daniel.puckmayr@avl.com

AVL-CD Wolfgang Hollerweger Wolfgang.Hollerweger@avl.com

AVL-CD Bernhard Frohner Bernhard.Frohner@avl.com

AMS Johannes Loinig Johannes.Loinig@ams.com

AMS Ernst Haselsteiner Ernst.Haselsteiner@ams.com

AMS Isabella Wagner Isabella.Wagner@ams.com

UWB Roman Čečil rcecil@kky.zcu.cz

UWB Michal Kepka mkepka@kgm.zcu.cz

UWB Tomas Mildorf mildorf@kgm.zcu.cz

UWB Martin Čech mcech@kky.zcu.cz

AIT Erwin Kristen Erwin.Kristen@ait.ac.at

AIT Christoph Schmittner Christoph.Schmittner@ait.ac.at

AIT Arndt Bonitz Arndt.Bonitz@ait.ac.at

INTRA Theofanis Orphanoudakis Theofanis.Orphanoudakis@intrasoft-intl.com

INTRA Dimitrios Skias Dimitrios.SKias@intrasoft-intl.com

UNIPR Antonio Cilfone antonio.cilfone@unipr.it

mailto:patricio.alemany@rovimatica.com
mailto:jesus.rodriguezm@upm.es
mailto:vdalakas@hua.gr
mailto:tsadimas@hua.gr
mailto:dimosthe@hua.gr
mailto:mara@hua.gr
mailto:gdimitra@hua.gr
mailto:jbastos@av.it.pt
mailto:iluengo@hi-iberia.es
mailto:grubio@hi-iberia.es
mailto:bartosz.jachimczyk@dac.digital
mailto:amedela@tst-sistemas.es
mailto:martijn.rooker@tttech.com
mailto:Patrik.Maier@avl.com
mailto:Bernhard.Frohner@avl.com
mailto:Zhendong.Ma@avl.com
mailto:daniel.puckmayr@avl.com
mailto:Wolfgang.Hollerweger@avl.com
mailto:Johannes.Loinig@ams.com
mailto:Ernst.Haselsteiner@ams.com
mailto:Isabella.Wagner@ams.com
mailto:rcecil@kky.zcu.cz
mailto:mkepka@kgm.zcu.cz
mailto:mildorf@kgm.zcu.cz
mailto:mcech@kky.zcu.cz
mailto:Erwin.Kristen@ait.ac.at
mailto:Christoph.Schmittner@ait.ac.at
mailto:Arndt.Bonitz@ait.ac.at
mailto:Theofanis.Orphanoudakis@intrasoft-intl.com
mailto:Dimitrios.SKias@intrasoft-intl.com
mailto:antonio.cilfone@unipr.it

Page 8 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 UNIPR Gaia Codeluppi gaia.codeluppi@unipr.it

UNIPR Luca Davoli luca.davoli@unipr.it

UNIPR Gianluigi Ferrari gianluigi.ferrari@unipr.it

MDH Afshin Ameri afshin.ameri@mdh.se

MDH Baran Curuklu baran.curuklu@mdh.se

MDH Branko Miloradovic branko.miloradovic@mdh.se

BOSIT Iván Gómez Ivan.gomez@bosonit.com

ROTEC Leonardo Napoletani leonardo.napoletani@rotechnology.it

PDMFC Francisco Damião Francisco.damiao@pdmfc.com

PDMFC Nuno Ramalho nuno.ramalho@pdmfc.com

BEV Dário Pedro dario.pedro@beyond-vision.pt

BEV João Carvalho joao.m.carvalho@beyond-vision.pt

BEV Fábio Azevedo fabio.azevedo@beyond-vision.pt

BEV Ricardo Sacoto ricardo.martins@beyond-vision.pt

RISE ACREO Cristina Rusu cristina.rusu@ri.se

RISE ACREO Åke Sivertun ake.sivertun@ri.se

ESTE Carlo Ferraresi ferraresi@estetechnology.com

CENTRIA Mikko Himanka Mikko.Himanka@centria.fi

UNIVAQ Marco Santic marco.santic@univaq.it

EXODUS Anna Palaiologk a.palaiologk@exodussa.com

NXP Axel Nackaerts axel.nackaerts@nxp.com

SPACEMETRIC Daniel Åkerman da@spacemetric.com

IMAG Alex Jonsson alexj@imagimob.com

CUNI Tomas Bures bures@d3s.mff.cuni.cz

CUNI Petr Hnetynka hnetynka@d3s.mff.cuni.cz

MTECH Johanna Häggman johanna.haggman@mtech.fi

SINTEF Mariann Merz Mariann.Merz@sintef.no

SINTEF Gorm Johansen Gorm.Johansen@sintef.no

VTT Miranto Akseli Akseli.Miranto@vtt.fi

APPS4 Diogo Silva diogo.silva@apps4mobility.com

UPM Jesús Rodríguez jesus.rodriguezm@upm.es

UPM Jose-Fernán Martínez jf.martinez@upm.es

mailto:gaia.codeluppi@unipr.it
mailto:luca.davoli@unipr.it
mailto:gianluigi.ferrari@unipr.it
mailto:afshin.ameri@mdh.se
mailto:baran.curuklu@mdh.se
mailto:branko.miloradovic@mdh.se
mailto:ake.sivertun@ri.se
mailto:a.palaiologk@exodussa.com
mailto:bures@d3s.mff.cuni.cz
mailto:hnetynka@d3s.mff.cuni.cz
mailto:Mariann.Merz@sintef.no
mailto:Gorm.Johansen@sintef.no
mailto:Akseli.Miranto@vtt.fi
mailto:diogo.silva@apps4mobility.com

Page 9 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 UPM Gregorio Rubio gregorio.rubio@upm.es

UPM Pedro Castillejo pedro.castillejo@upm.es

UPM Victoria Beltrán mv.beltran@upm.es

Internal Reviewers

Partner name Partner member e-Mail

MDH Baran Curuklu baran.curuklu@mdh.se

BEV Dário Pedro dario.pedro@beyond-vision.pt

RISE ACREO Cristina Rusu cristina.rusu@ri.se

mailto:baran.curuklu@mdh.se

Page 10 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Table of Contents

Table of Contents ... 10

Table of Figures .. 14

Tables ... 16

Definitions and Acronyms ... 16

1. Introduction .. 20

1.1. Structure of the document ... 20

2. Scenarios Requirements Matrix ... 22

2.1. General requirements ... 24

2.2. Vehicle requirements .. 27

2.3. HMI requirements ... 31

2.4. Communication requirements ... 35

2.5. Distributed intelligence requirements .. 43

2.6. Sensor and WSN requirements .. 47

2.7. Safety and security requirements .. 49

2.8. Cloud services requirements .. 55

2.9. Cloud resources monitoring requirements .. 59

2.10. Development Tool requirements ... 63

3. Data Requirements .. 66

3.1. Regions .. 66

3.2. Environment data ... 67

3.3. Crops and soil data ... 68

3.4. Livestock and milk quality data ... 71

3.5. Ground Vehicle data ... 76

Page 11 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 3.6. UAV data .. 78

4. General Architecture .. 80

4.1. Architecture approach for sharing of resources among farms ... 80

4.2. Functional and components architecture .. 81

4.2.1. The Farm Management System .. 83

4.2.2. The Semantic Middleware: .. 85

4.2.3. Deployed Hardware ... 93

4.2.4. Other Data Sources ... 100

4.3. Cyber-security management ... 101

4.3.1. Motivation .. 101

4.3.2. Security improvement .. 103

4.3.3. Safety / Security standard landscape ... 104

4.3.4. MQTT security ... 106

4.4. Wireless Sensor Networks .. 106

4.4.1. AFarCloud Sensor networks .. 107

4.4.2. Store and Forward networks .. 108

5. The Farm Management System ... 110

5.1. The Mission Management Tool ... 110

5.1.1. Description .. 110

5.1.2. Software Interfaces .. 116

5.2. Decision Support System.. 118

5.2.1. Description .. 118

5.2.2. Interfaces ... 119

5.2.3. Components .. 121

5.3. System Configuration ... 121

6. The Semantic Middleware ... 123

6.1. Cloud Data Storage .. 124

Page 12 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 6.1.1. Description .. 124

6.2. Cloud Resources Monitoring ... 125

6.2.1. Description .. 125

6.2.2. Components .. 126

6.3. Data interoperability (AFarCloud Data Model) ... 127

6.4. Data Access Manager .. 127

6.4.1. Description .. 127

6.4.1. Interfaces ... 127

6.4.2. Components Diagram .. 128

6.5. Data Query ... 129

6.5.1. Interfaces ... 129

6.5.2. Components Diagram .. 129

6.6. Device Registry .. 130

6.6.1. Description .. 130

6.6.2. Components diagram .. 130

6.7. Streaming Engine ... 131

6.7.1. Description .. 131

6.7.2. Components diagram .. 131

6.8. Device Manager ... 133

6.8.1. Description .. 133

6.8.2. Components diagram .. 134

6.9. Mission Manager .. 134

6.9.1. Description .. 134

6.9.2. Components diagram .. 135

6.10. Mission Processing & Reporter ... 136

6.10.1. Description ... 136

6.10.2. Components diagram ... 136

Page 13 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 6.11. Alarm Processing & Reporter ... 137

6.11.1. Description ... 137

6.12. Environment Reporter ... 138

6.12.1. Description ... 138

6.12.2. Components diagram ... 138

6.13. Data Pre-Processor .. 140

6.13.1. Description ... 140

6.14. Data Fusion .. 140

6.14.1. Description ... 140

6.15. Knowledge Extractor ... 141

6.15.1. Description ... 141

6.16. Image Processing Platform ... 141

6.16.1. Description and use cases ... 141

6.16.2. Interfaces ... 146

6.17. Image Data Manager .. 147

6.17.1. Description ... 147

6.17.2. Interfaces ... 147

6.18. MQTT Broker and MQTT Clients in the Middleware.. 148

6.18.1. Description ... 148

6.18.2. MQTT QoS configuration ... 148

6.18.3. List of MQTT topics .. 149

6.19. REST Server and REST Services ... 152

6.20. ISOBUS Gateway ... 154

6.20.1. Description ... 154

6.20.2. Functionalities .. 155

6.20.3. ISO11783-XML .. 157

6.21. DDS Manager ... 158

Page 14 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 6.21.1. Description ... 158

6.21.2. DDS Topic QoS configuration .. 159

6.21.3. List of DDS topics .. 160

6.21.4. Components diagram ... 162

6.21.5. Interfaces ... 162

7. Data Flow diagrams ... 163

7.1. Send a mission to a UAV .. 163

7.2. A UAV sends data to the Farm Management System ... 164

7.3. Send a mission to a semi-autonomous ground vehicle ... 165

7.4. Configure a sampling rate on a MQTT device ... 166

7.5. Devices send data to the platform ... 167

Annex 1. WSN Technologies .. 168

Annex 2. Data Definitions ... 179

Annex 3. Scenario Functionalities (D7.1) .. 185

Annex 4. User Requirements (D2.1) ... 187

Table of Figures

Figure 1: AFarCloud data sharing perspective .. 80

Figure 2: AFarCloud architecture .. 82

Figure 3: How WPs are reflected in the AFarCloud architecture ... 83

Figure 4: Interface with the Semantic Middleware for open vehicles ... 96

Figure 5: Interface with the Semantic Middleware for proprietary vehicles 96

Figure 6: Short range radio mesh network (on the left), LPWAN long range radio (on the right) ... 107

Figure 7: Overview of the MMT and its connections with the Robotics Agents through the MW. ... 112

Figure 8: Interfaces of the Mission Management Tool ... 118

Figure 9: The AFarCloud DSS architecture and interfaces .. 120

Figure 10: Interfaces of the System Configuration .. 122

Page 15 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Figure 11: Components of the semantic Middleware... 123

Figure 12: Data Access Manager Components Diagram .. 129

Figure 13: Data Query components diagram .. 130

Figure 14: Device Registry component diagram.. 131

Figure 15: Components of the Streaming Engine (SE) .. 132

Figure 16: Device Manager components diagram ... 134

Figure 17: Mission Manager components diagram .. 136

Figure 18: Mission Processing & Reporter components diagram .. 137

Figure 19: Environment Reporter components diagram .. 139

Figure 20: Data flow of the IPP for livestock location and tracking .. 142

Figure 21: Data flow of the IPP for vigour, water stress, weeds & dead plants detection 143

Figure 22: Data flow of the IPP for the estimation of the main cropping indexes through distributed

computing ... 144

Figure 23: Homography procedure ... 145

Figure 24: Misalignments between scene images from different lenses. The blue square is

surrounding the blue band image (a), whereas the red square is the contour of the red band image

(b). The yellow square represents the cropped images after transformations and illustrates the scene

area in common (c). .. 145

Figure 25: Image layers .. 146

Figure 26: NDVI representation in a crop .. 146

Figure 27: ISO11783-XML download .. 156

Figure 28: ISO11783-XML upload .. 156

Figure 29: Treatment zone examples .. 157

Figure 30: AFarCloud DDS dataspace .. 159

Figure 31: DDS Manager components diagram .. 162

Figure 32: Send a mission to a UAV ... 163

Figure 33: A UAV sends data to the FMS ... 164

Figure 34: Send a mission to a tractor .. 165

Figure 35: Configure a sampling rate on a MQTT device .. 166

Figure 36: Devices send data to the platform .. 167

Figure 37: Data collection through UAVs for low range WSNs .. 175

Figure 38: Collection of measures by a multi-hop WSN and integration in a typical IoT architecture

 ... 178

Page 16 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Tables

Table 1. Overview of actuators within the project .. 98

Table 2. Overview of sensors used within the project ... 99

Table 3. Cyber security level definitions .. 105

Table 4. Foundational requirements overview ... 105

Table 5. OntoManager interface ... 127

Table 6. RDBManager interface .. 128

Table 7. NRDBManager interface ... 128

Table 8. DDS Manager interfaces ... 162

Table 9: Comparison of short-range network standards .. 169

Table 10: Comparison of LPWAN implementations .. 173

Definitions and Acronyms

Acronym Definition Remark

ADF Acid Detergent Fiber

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

CAN Controller Area Network

CAPEX Capital Expenditure

CEC Cation-Exchange Capacity

CIR Color InfraRed

CoAP Constrained Application Protocol

CRUD Create, Read, Update and Delete

CoTS Commercial off The Shelf

CWSI Crop Water Stress Index

Page 17 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Acronym Definition Remark

DoW Description of Work

DB DataBase

DDS Data Distribution Service

DSS Decision Support System

eCO2 equivalent CO2

eTVOC equivalent Total Volatile Organic Compounds

FMS Farm Management System

FPCM Fat-Protein Corrected Milk

FR Foundational Requirements

GA Genetic Algorithm

GDPR General Data Protection Regulation

GIS Geographical Information System

GNSS Global Navigation Satellite System

GPS Global Positioning System

GPU Graphics Processing Unit

GUI Graphical User Interface

GV Ground Vehicle

HLP High-Level Planning

HMI Human Machine Interface

HTTP HyperText Transfer Protocol

ID IDentifier

IDL Interface Description Language

IDM Image Data Manager

IMU Inertial Measurement Unit

IoT Internet of Things

IPP Image Processing Platform

IT Information Technology

KE Knowledge Extractor

LLP Low-Level Planning

Page 18 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Acronym Definition Remark

LPWAN Low Power Wide Area Networks

MLP Mid-Level Planning

MQTT Message Queuing Telemetry Transport

MQTT-SN Message Queuing Telemetry Transport for Sensor Networks

MMT Mission Management Tool

MW Middleware

M2M Machine to Machine

NB-IoT NarrowBand IoT

NDF Neutral Detergent Fiber

NDRE Normalized Difference Red Edge index

NDVI Normalized Difference Vegetation Index

NDWI Normalized Difference Water Index

NGSI-LD NGSI with Linked Data

NP-hard Non-deterministic Polynomial-time hardness

N-S-E-W North-South-East-West

NTP Network Time Protocol

OGC Open Geospatial Consortium

OPEX OPerational EXpenditure

OT Operation Technology

QoS Quality of Service

REST REpresentational State Transfer

RGB Red Green Blue

SIFT Scale Invariant Feature Transform

SPOF Single Point Of Failure

SOM Soil Organic Matter

SfM Structure for Motion

SIL Safety Integrity Level

SL Security Level

SLO Service-Level Objective

Page 19 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Acronym Definition Remark

SPARQL SPARQL Protocol and RDF Query Language

SQL Structured Query Language

SSL Secure Sockets Layer

TBD To Be Described

TLS Transport Layer Security

TVOC Total Volatile Organic Compounds

UAV Unmanned Aerial Vehicle Also mentioned

as vehicle(s)

dependent on the

context

UDP User Datagram Protocol

(U)GV (Unmanned) Ground Vehicle Also mentioned

as vehicle(s)

dependent on the

context

USB Universal Serial Bus

UTF Unicode Transformation Format

VQT Value, Quality, Time (data format)

WMS Web Map Service

WSN Wireless Sensor Network

XML EXtensible Mark-up Language

6LoWPAN IPv6 over Low-Power Wireless Personal Area Networks

Page 20 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

1. Introduction

This document contains the functional and non-functional architectural requirements of the AFarCloud

platform, as well as the design of the architecture.

In order to define the architectural requirements for the AFarCloud platform, this document has taken

as input the methodology described in deliverable D6.1 (more specifically, the system viewpoint and

the goals and subgoals identified in the AJA tables) and the end-user requirements collected through

questionnaires in Tasks 2.1 and 7.1.

Based on these requirements, the design of the AFarCloud platform architecture has been carried

out. This platform consists of three main functional components: (i) the Farm Management System,

(ii) the Semantic Middleware and (iii) the Deployed Hardware. Besides, the AFarCloud platform will

interconnect with other data sources like third-party data and legacy systems databases.

The Farm Management System offers: a Mission Management Tool (MMT), a Decision Support

System (DSS), a system configurator and applications for the user to manage and monitor the whole

system; plan cooperative missions involving Unmanned Aerial Vehicles (UAV) and ground vehicles

ranging from fully autonomous UGVs to legacy systems; configure the above-mentioned systems

including their key hardware components (mission relevant sensors and other component important

for performing a mission); and make decisions pre-, during-, and post-mission.

The Semantic Middleware offers, among others, components for: data storage and retrieval from the

Cloud; managing and cataloguing images; registration of IoT devices, animals and vehicles in the

farm; data flow management inside the platform; managing, controlling and acquiring data from IoT

devices and missions involving ground and aerial vehicles; data processing and knowledge

extraction.

The Deployed Hardware layer involves the functionalities related to unmanned aerial vehicles, semi-

autonomous ground vehicles, actuators, sensors and other IoT devices.

1.1. Structure of the document

The document is organised as follows. Chapter 2 provides the list of architectural requirements

grouped by categories: general, vehicle, user interface, communication, distributed intelligence,

sensors, devices and WSN, safety and security, cloud services, cloud resources monitoring and

development tool requirements.

Page 21 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Chapter 3 gathers the kind of information that will be used and exchanged inside AFarCloud platform

regarding geographic regions, environment data, crops and soil data, livestock and milk quality

information, ground and aerial vehicles.

In Chapter 4, the approach followed in the project for sharing of resources among farms is explained.

Besides, the three main functional components of the platform (i.e. Farm Management System,

Semantic Middleware and Deployed Hardware) are described in detail and their expected

functionalities are presented.

Chapter 5 is dedicated to the Farm Management System and its three main components: the Mission

Management Tool that provides services for (i) defining, (ii) planning, (iii) monitoring, (iv) controlling,

(v) analysing, and finally (vi) saving mission-related data (incl. sensor data, status of all connected

hardware such as sensors, actuators, robots/vehicles where applicable) in steps (i) – (v) of a mission;

the Decision Support System, which provides expert recommendations using algorithms that extract

conclusions from data; the System Configuration that handles the configuration of system hardware

(vehicles, sensors, actuators, etc.).

Chapter 6 describes the Semantic Middleware and all its internal components: cloud data storage,

cloud resources monitoring, data interoperability, data access manager and data query, device

registry, streaming engine, device and mission managers, mission and alarm processing & reporters,

environment reporter, data pre-processor, data fusion and knowledge extraction, image processing

and data manager, ISOBUS gateway, DDS manager, MQTT broker and clients and REST services.

Finally, Chapter 7 contains some data flow diagrams depicting a) how missions are sent to UAVs and

(semi-)autonomous UGVs, b) how data flows from the vehicles and from the IoT devices to the

middleware and to the FMS, c) how to configure the sampling rate on a MQTT device.

Page 22 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

2. Scenarios Requirements Matrix

The purpose of this section is to provide the list of architectural requirements of a flexible and secure

AFarCloud platform in terms of data collection, data communication/processing, and device control.

To this end and following the strategy for demonstrations detailed in deliverable D7.1, the work has

taken as input the list of demonstrator functionalities in D7.1 (added for readability as Annex 3.

Scenario Functionalities (D7.1)), the list of user requirements defined in D2.1 (added as Annex 4.

User Requirements (D2.1)) and the Scientific, Technical and Business Objectives described in the

DoW.

Some general guidelines have been followed when defining the requirements:

• Each requirement should be TRACEABLE in order to allow future mapping between system

and integration

• Design each requirement so to keep its ATOMICITY (that is, at the lowest possible detail level

so that it should not be possible to split it in two or more components)

• Every requirement should be, at some point, TESTED so statements must be expressed as

testable arguments.

• Try to keep every requirement as CONSISTENT and UNAMBIGUOUS as possible.

• Relevant information within a statement should always be clear to make the requirement

COMPLETE.

In the requirements matrix the use of the word “shall” or ”will” denotes requirements that must be

met. Use of the word “should” denotes requirements that are desirable. Use bold for "shall"/”will”

and "should".

The requirements are grouped according to the following definitions:

• GEN – General requirements. Requirements that are not specific to any of the following

categories (see below).

• VEH – Vehicle requirements. Specific requirements for UAVs, UGVs, and legacy systems.

• HMI – User interface requirements.

• COM – Communication requirements.

• INT- Distributed intelligence, cooperation algorithms, etc.

• SEN – Sensor and WSN requirements

• SEC – Safety and security requirements

Page 23 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 • CLOUD – Cloud services requirements. AFarCloud services should be deployed on a multi-

cloud environment that ensures scalability, performance and accessibility, alerting when a

non-functional requirement is violated. AFarCloud platform should provide the five essential

characteristics for cloud computing as defined by NIST1: (i) On-Demand Self-Service, (ii)

Broad Network Access, (iii) Resource Pooling, (iv) Rapid Elasticity and (v) Measured Service.

• CLDMON – Cloud resources monitoring requirements. These are requirements for the

monitoring component which, as described in the DoW, will monitor the availability and

performance of the cloud resources with the main aim of triggering events. This component

will verify if the non-functional requirements of the Cloud Services Provider (CSPs) and the

SLOs are being fulfilled.

• DEV - Development Tool requirements. These are the set of requirements requested by

partners which plan to use components from other partners.

For each requirement, the following information is provided:

• Req. No.: Requirement numbers shall start with the group followed by a unique number.

Derived requirements (if any) have an additional number. For example: GEN-1-1 is the first

derived requirement to requirement GEN-1. Requirements numbers may be changed in final

version of documents. Letters may be used in early document versions in order to present

requirements in a logical order e.g.GEN-1, GEN-1a, GEN-2, GEN-2a, GEN-2b, GEN-3 etc.

• Req. Description: definition of the requirement

• Source: input from where this architectural requirement was defined. This includes:

functionalities from the demonstrators in D7.1, user requirements identified in D2.1 and

objectives described in DoW.

• Priority: relevance of this requirement for end-users and for achieving the objectives in the

DoW or the goals and functionalities of the demonstrators

• Deadline: expected year when a first release of this requirement should be ready in order not

to put into risk the objectives of the project. Improvements can be done in future releases.

• Responsible WP: main WPs that are responsible for providing the requirement.

• Comment: additional information that can be useful for the comprehension of the requirement.

1 The NIST Definition of Cloud Computing: http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

Page 24 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

2.1. General requirements

General requirements (GEN)

Req no. Req. Description

Source (see Annex 3. Scenario

Functionalities (D7.1) & Annex

4. User Requirements (D2.1))

Priority Deadline Responsible WP

GEN-1 The system shall provide a framework (methods &

collection of technologies) to facilitate the use of

autonomous (ground and aerial) vehicles and

sensors for precision farming

F1, F5, F28

UR1, UR2, UR5, UR7, UR8,

UR12, UR18.

DoW

High Y1 (sensors),

Y2 (vehicles)

WP2, WP3, WP4,

WP5, WP6

GEN-2 Historical information about a mission should be

available in the system for further usage: mission

assessment, planning of future mission and input to

the DSS for additional knowledge extraction.

DoW Medium Y1 WP2

GEN-3 A mission shall consist of a set of tasks to be

performed by a group of ground or/and aerial

vehicles with the purpose of achieving certain goals.

When a non-autonomous vehicle, or job, is required,

a human is assumed to operate the intended system.

F28

DoW

High Y2 WP3, WP2

Page 25 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 General requirements (GEN)

Req no. Req. Description

Source (see Annex 3. Scenario

Functionalities (D7.1) & Annex

4. User Requirements (D2.1))

Priority Deadline Responsible WP

GEN-4 The system shall use a common data format for the

data exchanged between software components

DoW High Y1 WP2

GEN-5 The system shall be designed in compliance with

standards selected according to system domain i.e.,

web standards, telecommunication standards, user

interface standards, WCAG 2.1, etc.

DoW High Y3 WP2, WP3, WP4,

WP5, WP6

GEN-6 All relevant entities, vehicles and nodes in the system

shall use Epoch date/time format

DoW High Y1 WP4, WP5, WP6

GEN-7 The system shall provide mechanisms to exploit data

from at least one common existing farm management

systems already in use in one of the demonstration

sites (preferably at a holistic demonstration site i.e.,

AS09-AS11).

UR7 High Y3 WP2

GEN-8 The system shall provide farmers with means to

access information coming from other farms and

external sources (i.e., meteorological data)

F1

UR7, UR12

DoW

High Y2 WP4, WP2

Page 26 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 General requirements (GEN)

Req no. Req. Description

Source (see Annex 3. Scenario

Functionalities (D7.1) & Annex

4. User Requirements (D2.1))

Priority Deadline Responsible WP

GEN-9 Ground and airborne vehicles shall be used in at

least one of the holistic scenarios (AS09-AS11)

DoW High Y2 WP7, WP6

GEN-10 The system should allow the registration of new

sensors, actuators and vehicles in AFarCloud before

the start of a mission.

DoW Medium Y2 WP2

GEN-11 The system should support several distinct user

roles

DoW Medium Y2 WP3, WP2

Page 27 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 2.2. Vehicle requirements

Vehicle requirements (VEH)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

VEH-1 The system shall support ISObus (ISO

11783) compatible ground vehicles (this

may not apply to all UGVs, since they

may be primarily robotic systems).

DoW High Y1 WP6

VEH-2 UAVs shall transmit at least the following

information to the middleware: position

and orientation, speed, inner status

(fuel/battery left) and task status.

DoW High Y1 WP6 The information will be sent via DDS

VEH-3 GVs should transmit at least the

following information to the middleware:

position, speed and inner status

(fuel/battery left).

DoW Medium Y2 WP6 Tractor interface shall be the ISO-XML file.

VEH-4 UAVs should detect, react to, and report

internal faults and error states, at least

safety critical.

DoW Medium Y2 WP6 Actions might have to be determined from

the vehicle’s status

Page 28 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Vehicle requirements (VEH)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

VEH-5 GVs should detect, react to and report

internal faults and error states, at least

safety critical.

DoW Medium Y2 WP6 Actions might have to be determined from

the vehicle’s status.

Detection + Reaction is done directly by

vehicle.

SAE J1939-73 defines Diagnostic

messages sent on CAN bus containing

DTCs (Diagnostic Trouble Codes - basically

a number up to ~550000), the meaning of

the DTCs is vehicle specific. So, the

AFarCloud Platform will need to know at

least those DTCs which shall be used for

‘actions’.

VEH-6 Data regarding UAV and satellite

monitoring should be collected and

stored in AFarCloud data repositories.

DoW Medium Y1 (UAV),

Y2

(satellite

monitoring)

WP4, WP5,

WP6

Page 29 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Vehicle requirements (VEH)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

VEH-7 GVs shall have machine interfaces (e.g.,

displays) showing information from the

AFarCloud system to the operator

DoW High Y2 WP3 A tractor will have a display (or tablet)

mounted inside the cabin, which is

providing information to the farmer.

Difference in interface between

1) tablets (android, iOS) with mobile

data (mobile MMT): direct

connection to cloud;

2) tractor display interfaces usually

CANbus + USB stick with ISO-

XML; framework is e.g.,

embedded linux/ Codesys

VEH-8 Tractors shall have a power supply (12V)

for connecting the machine interface

DoW High Y2 WP6

VEH-9 UAVs should have a safe state for each

operational situation whenever possible.

See SEC-18.

DoW Medium Y1 WP6 E.g., a ROS node may be created to detect

critical operational situation

VEH-10 GVs shall have a safe state for each

operational situation.

DoW High Y1 WP6

Page 30 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Vehicle requirements (VEH)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

VEH-11 UAVs shall switch to safe state whenever

possible if a flight safety critical incident is

detected.

DoW High Y2 WP6 E.g., a ROS node may be created to

receive alerts and switch to safe mode.

VEH-12

GVs shall switch to safe state if at least

one contributing device of a mission

reports a safety critical incident.

DoW High Y2 WP6 Example: Tractor + implement is on the

field, performing the tasks of a mission. All

of the sudden, one positioning sensor on

the field fails or gives implausible values.

In this case the tractor shall switch to safe

state --> I.e., stop movement, stop

implement operation.

Page 31 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 2.3. HMI requirements

HMI requirements (HMI)

Req no. Req. Description Source Priority Deadline Responsible WP Comment

HMI-1 The operator shall be given a warning if an

abnormal situation occurs. Comment: Could

be an alarm and/or a visual indication.

UR3 High Y2 WP3, WP6

HMI-2 The operator shall see ground and airborne

vehicles locations in a map

F28

UR28

High Y1 WP3, WP6, WP2

HMI-3 Manual mode shall overrule automatic mode UR3 High Y1 WP3, WP6

HMI-4 The data gathered by the system shall be

displayed to the operator in a user-friendly

way.

UR1 High Y2 WP3, WP2

HMI-5 Cow geofencing: the operator should receive

a warning when a cow gets close to

previously established borders

F8, F23, F24

UR19, UR24

Low Y2 WP3, WP2, WP4

Page 32 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 HMI requirements (HMI)

Req no. Req. Description Source Priority Deadline Responsible WP Comment

HMI-6 The operator shall receive a warning if a cow

shows unusual behaviour that could be

indicative of sickness, such as staying in one

place for long periods of time or not drinking

water.

F8-F13, F23,

F24

UR19, UR24

High Y3 WP4, WP2, WP3 Details of sickness-related

behaviours shall be consulted

with experts at a later date.

HMI-7 The operator should receive an alert if a cow

is being excluded by the rest.

F8, F13, F23,

F24

Low Y3 WP4, WP2, WP3 The excluded cow should be

individually identified for the

operator.

HMI-8 Data required by the users and higher-level

inferred information shall be available and

represented in a GUI, in a georeferenced

way, eventually layered, when applicable

UR1 High Y2 WP3, WP2, WP4

HMI-9 The farm operator shall be able to consult

information, notifications and alerts about

provided milk quality (FPCM), estimated CO2

production and estimated water consumption.

F26 High Y2 WP3, WP4

Page 33 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 HMI requirements (HMI)

Req no. Req. Description Source Priority Deadline Responsible WP Comment

HMI-10 A mission management tool shall allow

farmers to generate plans for the support of

the coordinated actions to be carried out by

(semi)-autonomous vehicles (ground and

aerial).

F28

UR6

High Y1 WP3, WP6

HMI-11 A decision support system shall support

farmers providing pre-mission data analysis,

real-time data analysis during missions and

post-mission data analysis.

F2, F4, F7, F16,

F22

UR1

High Y2 WP3 (support: WP2,

WP4)

The DSS must be domain

specific, and a set of

problems must be chosen for

this purpose.

HMI-12 The system should define user groups that

can access different HMI solutions (or

technologies).

UR1 Medium Y3 WP3 E.g., an HMI solution for

mission management will be

different than those for AUV

control; or solutions that show

more or less detailed

information (see Chapter 5).

HMI-13 The system shall provide a user interface to

configure which data is sent from a vehicle to

the cloud

F28 High Y2 WP3, WP6

Page 34 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 HMI requirements (HMI)

Req no. Req. Description Source Priority Deadline Responsible WP Comment

HMI-14 Sensor data shall be visualized in form of

dynamic charts

UR4, UR10 High Y2 WP3, WP2, WP4

HMI-15 User should be allowed to define alerts

based on observed values or their timeline

F1-F16, F18,

F20-F26, F28

Medium Y3 WP3

HMI-16 The system should be able to generate

reports based on the collected data (for

example milk productivity, milk quality, animal

health status, etc.)

F26

UR22, UR27

Medium Y3 WP3

HMI-17 The user interface shall be compatible with

the system architecture of the vehicle (e.g.,

CAN, Ethernet, etc)

F19, F28

UR3-UR5

High Y3 WP3, WP6

Page 35 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 2.4. Communication requirements

Communication requirements (COM)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

COM-1 There shall be (at least) a local network to

support systems’ communications in all

demonstrators.

To support all

functionalities

High Y1 WP2, WP7

COM-2 Communication between different vehicles

(i.e., UAVs, UGVs, and where applicable,

legacy systems) should be supported

depending on the scenario requirements (i.e.,

if in the scenario there are both UAVs and

smart tractors, then UAV and GV connectivity

may be considered).

F28 Medium Y3 WP6, WP2

COM-3 Communication between Wireless Sensor

Networks (WSN) nodes should be possible

through multi-hop communications.

To support all

functionalities

Medium Y1 (at least

in 1

scenario),

Y2 (other

scenarios)

WP2

Page 36 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Communication requirements (COM)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

COM-4 The in-vehicle gateway in the tractor should

provide communication between the cloud

and the onboard ISOBUS and CAN bus.

F17, F19,

F28

UR2, UR7

Medium Y2 WP6, WP2

COM-5 The in-vehicle gateway in the tractor should

be able to collect data from vehicle on-board

systems (e.g., diagnostic, usage, operational

scenarios) and forward them over-the-air to

the cloud.

F17, F19,

F28

UR5

Low Y2 WP6, WP2

COM-6 The system should be able to send software

update from the cloud to a tractor through an

in-vehicle gateway for over-the-air (OTA)

firmware or software update.

F17, F19,

F28

Low Y3 WP6, WP2

COM-7 Communication between battery powered

WSN nodes shall be realized by energy

efficient technologies (with low battery

consumption).

DoW High Y1 WP2

Page 37 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Communication requirements (COM)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

COM-8 Communication link between ruminal probes

and concentrator/relay should be based on

technology that is not hindered by body

tissues.

F8-13, F25 Medium Y1 WP5

COM-9 Software updates should consider vehicle

status (e.g., if an update can be applied

without influencing ongoing vehicle

operation).

F17, F19,

F28

UR3

Medium Y3 WP6/WP2 Especially in a domain where

the availability of vehicles and

machinery is so critical, it is

important to ensure that

software updates are only

applied if the timing suits the

planning of farming tasks and

the vehicle is able to ensure

correct operation after an

update.

COM-10 Software updates of UAV should not be

attempted while the UAV is in use.

F17, F19,

F28

UR3

Medium Y3 WP6/WP2

Page 38 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Communication requirements (COM)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

COM-11 The vehicle should be able to test if a

software update was successfully applied

and revert back to an operational status if the

update was not successful

F17, F19,

F28

Low Y3 WP6, WP2

COM-12 The AFarCloud communication architecture

shall support various transmission ranges

(depending on the communication technology

and use case): long (beyond 1 km), medium

(between 1 km and 100 m), and short (below

100 m)

DoW

UR8

High Y1 WP2

COM-13 The AFarCloud communication architecture

shall support various data rates (depending

on the communication technology and use

case): very high (higher than 50 Mb/s), high

(between 1 Mb/s and 50 Mb/s), medium

(between 10 kb/s and 1 Mb/s), low (between

250 b/s and 10 kb/s), very low (below 250

b/s).

DoW High Y1 WP2

Page 39 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Communication requirements (COM)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

COM-14 Information shall flow among different types

of networks (e.g., from a local WiFi network

to a long-range LoRa network), i.e.,

interoperability between heterogeneous

networks (i.e., with “translation” between

different communication protocols) will be

guaranteed.

DoW

UR8

High Y2 WP2

COM-15 The AFarCloud communication architecture

shall provide different levels of data reliability

(e.g., TCP or UDP transmissions)

DoW High Y1 WP2

COM-16 The AFarCloud communication architecture

shall provide different levels of real-time

communication/timing constraints (e.g.,

hard/soft real-time or non-real-time)

DoW High Y1 WP2

Page 40 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Communication requirements (COM)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

COM-17 The AFarCloud communication architecture

shall provide different levels of

communication energy efficiency, depending

on the considered use case and specific

node lifetime objective

DoW High Y2 WP2

COM-18 The AFarCloud communication architecture

shall aim at using a common (single)

network layer protocol across the various

demonstrators. Tentatively IP (v4 o v6) for

very high, high, medium and low bit rates and

LoRaWAN for very low bit rates.

DoW High Y1 WP2 Non-proprietary protocols allow

addressing in the same way

computers and WSN nodes

(OpenThread).

COM-19 The AFarCloud communication architecture

should allow the creation of remote

disconnected networks.

DoW Medium Y2 WP7 When the involved distance is

too high the existence of

remote disconnected networks

should be possible.

COM-20 Low delay future communications (like 5G)

should be kept in mind, at least between the

UAVs and the local network servers

DoW Medium Y2 WP6, WP2 For some mission planning and

collision avoidance algorithms,

it’s preferable to distribute the

code in order not to drain the

Page 41 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Communication requirements (COM)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

UAV battery. But to keep the

algorithm validity the request,

processing and response must

be done under ~100ms.

COM-21 Remote data collection shall be supported by

the deployment of one or more WSN.

F1 High Y1 WP2, WP5 The number of nodes will

depend on the specific

demonstrator (e.g., a large area

may be covered by hundreds of

nodes organized in different

WSNs)

COM-22 Remote data collection shall be realized by

guaranteeing communication among

UAVs/GVs and the cloud through proper

communication protocols (5G for very high

transmission rates or LoRa for very low

transmission rates).

F17, F19,

F28

High Y3 WP6, WP2

Page 42 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Communication requirements (COM)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

COM-23 Remote animal monitoring shall be

implemented by the communication from

body-worn sensor nodes (e.g., collars on

cows), possibly equipped with GPS for geo-

localization, and the cloud through proper

communication protocols (e.g., LoRa for long-

distance communications, while pasturing, or

WiFi for short-distance communications, with

cows close to the barn).

F17, F19,

F28

High Y2 WP5, WP2 Collected data examples: GPS

animal position, behaviour, etc.

Page 43 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 2.5. Distributed intelligence requirements

Distributed intelligence requirements (INT)

Req no. Req. Description Source Priority Deadline Responsible WP

INT-1 The system shall improve the profitability of crops production in the

farm.

F15, F19, F20

UR10, DoW

High Y3 WP2, WP3, WP4, WP5,

WP6

INT-1-1 The system shall determine the status of the plant through the

monitoring of the soil and climate conditions.

F1, UR12, UR18,

UR31

High Y3 WP3, WP4, WP5

INT-1-2 The system shall be able to determine when to water the crops. F15, F16, UR1,

UR31

High Y3 WP3, WP4, WP5

INT-1-3 The system shall be able to predict diseases on crops. F14, UR10 High Y3 WP3, WP4, WP5

INT-1-4 The system shall be able to detect presence of weeds. UR16 High Y2 WP4, WP5

INT-1-5 The system should be able to monitor macro and micronutrient

levels.

UR29 Medium Y3 WP3, WP4, WP5

INT-1-6 The system shall be able to determine the best time to harvest

within a reasonable timeframe.

F4, UR17 High Y3 WP3, WP4, WP5

INT-1-7 The system shall help to reduce the usage of pesticides in the

crops by 30%

F5

UR18

High Y3 WP3, WP4, WP5

Page 44 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Distributed intelligence requirements (INT)

Req no. Req. Description Source Priority Deadline Responsible WP

INT-2 The system shall improve the profitability of livestock and milk

production in the farm.

F10, F13

UR19, UR23, UR25.

DoW

High Y3 WP2, WP3, WP4, WP5,

WP6

INT-2-1 The system shall help improve animals’ welfare w.r.t. standards

measures.

F10, F11, F12, F13,

F23, F24, F25, F27

UR19, UR21, UR22,

UR23, UR24, UR25,

UR28.

High Y2 WP2, WP3, WP4, WP5.

Welfare improvement

will be specified by the

experts in the project.

INT-2-2 The system shall monitor the location of cows. F8, F23

UR24

High Y3 WP4, WP5

INT-2-3 The system shall monitor the activity of cows (steps, and other

movements).

F13

UR19

High Y3 WP4, WP5

INT-2-4 The system shall monitor eating and rumination periods, and shall

estimate daily intakes, grazing habits and watering habits.

F25, F27

UR21, UR22

High Y3 WP4, WP5

INT-2-5 The system shall allow calving detection of animals F13

UR25

High Y3 WP4, WP5

Page 45 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Distributed intelligence requirements (INT)

Req no. Req. Description Source Priority Deadline Responsible WP

INT-2-6 The system shall allow in heat detection of animals F13

UR20

High Y3 WP4, WP5

INT-2-7 The system shall estimate reproduction rates of animals F13

UR23

High Y3 WP4, WP5

INT-3 In WSN, the system should notify the coordinator node when

another node leaves the system.

DoW Medium Y3 WP5

INT-4 In WSN, the system shall provide node heartbeat mechanism DoW High Y2 WP5

INT-5 The system shall be designed for efficient distributed mining of

large-scale amounts of data. Data exchange should be small or

compressed.

DoW High Y2 WP2

INT-6 The system shall be designed to guarantee interoperability

between communicating entities in the platform (e.g., using a well-

defined API)

DoW High Y2 WP2

INT-7 The data from heterogeneous sensors, third-party systems, and

external data warehouses shall be pre-processed, aggregated and

fused by appropriate algorithms, running at sensor nodes (dew

computing), at border gateways/platforms (edge computing), and in

the cloud (cloud computing).

DoW High Y3 WP4, WP5

Page 46 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Distributed intelligence requirements (INT)

Req no. Req. Description Source Priority Deadline Responsible WP

INT-8 Processing of large amounts of data shall be possible to enable

descriptive analytics (e.g., to monitor raw milk quality, CO2

production or water consumption), and predictive analytics

(visualize and forecast milk production and other parameters e.g.,

raw milk quality, CO2 production or water consumption).

F2, F4, F16, UR1 High Y3 WP2

INT-9 Knowledge extraction algorithms shall use pre-processed data,

and/or raw data, stored in AFarCloud repositories

DoW High Y2 WP2, WP4

INT-10 Knowledge extraction algorithms shall provide output to AFarCloud

repositories, i.e., DBs and/or ontology

DoW High Y2 WP2, WP4

INT-11 DSS and MMT decision making algorithms shall query AFarCloud

repositories to exploit pre-processed data and/or extracted

information in their decision processes

DoW High Y1 WP2, WP3, WP4

INT-12 The system shall anonymize sensitive data before sharing

externally.

DoW High Y3 WP3

INT-13 The system should be able to determine when a remote

disconnected network needs its data to be collected (by UAV or

(U)GV)

DoW Low Y3 WP5, WP6

Page 47 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Distributed intelligence requirements (INT)

Req no. Req. Description Source Priority Deadline Responsible WP

INT-14 Cooperative data maps used for navigation and awareness should

be shared and used by the multiple UAVs

DoW Medium Y3 WP6

2.6. Sensor and WSN requirements

Sensor requirements (SEN)

Req

no.
Req. Description Source Priority Deadline

Responsible

WP
Comment

SEN-1

The quality control software based on computer vision

in vineyards should require the weather parameters (air

temperature and vapour pressure deficit).

F1, UR12 Medium Y2 WP4, WP5

The weather parameters

are needed to calculate

water stress.

SEN-2

The system should monitor the environmental

conditions in the vineyard through a Wireless Sensor

Network (WSN). The parameters to be measured are:

air temperature, humidity, leaf wetness, rainfall, soil

temperature, soil moisture, solar radiation, atmospheric

pressure, wind speed and wind direction.

F15, UR31 Medium Y2 WP4, WP5

Page 48 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Sensor requirements (SEN)

Req

no.
Req. Description Source Priority Deadline

Responsible

WP
Comment

SEN-3

The system shall gather soil information from the WSN

including soil moisture, temperature, electrical

conductivity and various depth.

F14, UR31 High Y1 WP4, WP5

SEN-4

The system should provide a specification about the

registration of computing nodes in the distributed

system

DoW Medium Y2 WP4

SEN-5
The system should allow to pre-process on the sensor

level
DoW Medium Y3 WP4

SEN-6
The system should monitor the conditions of an

individual cow in the herd.

F9, F10, F11,

F12, F13, F24,

UR21, UR23

Medium Y2 WP4, WP5

SEN-7
The system should backup/cache measured data if

connection is temporarily lost.
DoW Medium Y3 WP4

SEN-8
The system shall monitor the environmental conditions

in both the stable and the surroundings

F1, DoW (stable),

UR12
High Y2 WP4, WP5

SEN-9 The system shall exchange sensor data by

standardized interfaces and protocols

DoW High Y1 WP5, WP4,

WP2

Page 49 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Sensor requirements (SEN)

Req

no.
Req. Description Source Priority Deadline

Responsible

WP
Comment

SEN-

10

The system shall provide sensor data in format

suitable for integration with systems for herd

management

UR7 High Y1 WP5, WP4,

WP2

SEN-

11

The system should register metadata for sensors

(accuracy, range, calibration, location, maintenance,

validation…)

DoW

Medium Y2 WP5, WP4

2.7. Safety and security requirements

Safety and security requirements (SEC)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

SEC-1 The system architecture shall have a

security by design principles approach

UR3

DoW

High Y2 WP2, WP6

SEC-2 Novel components for GV shall be

developed along ISO25119.

DoW High Y3 WP6, WP2

Page 50 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Safety and security requirements (SEC)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

SEC-3 The in-vehicle gateway for the tractor

shall provide mechanisms for

authentication to prevent identity

spoofing.

DoW High Y2 WP6, WP2

SEC-4 The in-vehicle gateway for the tractor

shall provide mechanisms for data

integrity to prevent tampering of over-

the-air data transmission to and from

the cloud.

DoW High Y2 WP6, WP2

SEC-5 The in-vehicle gateway for the tractor

shall provide data confidentiality and

sender/receiver authentication for data

in transit over the Internet (from the

cloud and to the cloud).

DoW High Y2 WP6, WP2

SEC-6 End-to-end data consistency shall be

ensured.

DoW For SL(0): Low

Others: High

Y2 WP6, WP7 Depends on the defined

security level (SL)

Similar to SEC 7 and SEC 21

Page 51 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Safety and security requirements (SEC)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

SEC-7 A security risk assessment shall be

performed for security relevant system

components, to define the necessary

security.

DoW High Y1 WP6 / WP7 A security risk assessment

procedure will determine the

necessary security level.

SEC-8 The communication between the

different actors shall be secure by

adequate security measures to prevent

data spying and data manipulation.

DoW

For SL(0): Low

Others: High

Y2 WP6 / WP7 Depends on the defined

security level (SL)

Similar to SEC 5 and SEC 21

SEC-9 Only authenticated users shall have

access to the user interfaces and the

system components.

DoW For SL(0): Low

Others: High

Y2 WP6 / WP7 Depends on the defined

security level (SL)

SEC-10 The control system shall provide the

capability to identify and authenticate

all human users.

DoW For SL(0): Low

Others: High

Y2 WP6 / WP7 Depends on the defined

security level (SL)

Page 52 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Safety and security requirements (SEC)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

SEC-11 The assigned privileges of an

authenticated user (human, software

process or device) shall be enforced to

perform the requested action on the

control system and monitor the use of

these privileges.

DoW For SL(0): Low

Others: High

Y2 WP6 / WP7 Depends on the defined

security level (SL)

SEC-12 The integrity of the control system

should be ensured to prevent

unauthorized manipulation.

DoW For SL(0): Low

Others: High

Y2 WP6 / WP7 Depends on the defined

security level (SL)

SEC-13 The confidentiality of information on

communication channels and in data

repositories should be ensured to

prevent unauthorized disclosure.

DoW For SL(0): Low

Others: High

Y2 WP6 / WP7 Depends on the defined

security level (SL)

SEC-14 In case of detected security violations,

the proper authority should be notified,

the event should be reported and

corrective actions should be taken

timely manually.

DoW

For SL(0): Low

Others: Medium

Y2 WP6 / WP7 Depends on the defined

security level (SL)

Page 53 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Safety and security requirements (SEC)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

SEC-15 The availability of the control system

against the degradation or denial of

essential services should be ensured.

System loads by resource

management should be prevented.

DoW For SL(0): Low

Others: Medium

Y2 WP6 / WP7 Depends on the defined

security level (SL)

SEC-16 Software updates should be performed

periodically when provided from the

control system supplier

DoW For SL(0): Low

Others: High

Y2 WP6 / WP7 Depends on the defined

security level (SL)

SEC-17 The system should include

mechanisms to create roles and groups

of users to give certain permissions to

users who belong to a group or have a

certain role. This way, we can quickly

change the permissions of many users

at once. In addition, we can have a

much more specific user differentiation.

DoW High Y2 WP6 / WP7 Depends on the defined

security level (SL)

Page 54 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Safety and security requirements (SEC)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

SEC-18 Safe states and the shutdown paths for

all autonomous vehicles shall be

defined for all states of a mission.

F28 High Y2 WP6 / WP7 shutdown path = way to reach

the safe state.

Safety relevant

SEC-19 In case of collision of a vehicle with

other vehicles or obstacles, the

emergency shutdown path of all

vehicles in the mission shall be

triggered

F28 High Y2 WP6 / WP7 i.e., triggered by the airbag

sensor of the colliding device

Safety relevant

SEC-20 An emergency stop button shall be

mounted at the main operator’s

viewpoint as well as in the cabin of

manned vehicles. This emergency stop

button shall trigger the safe state of all

devices in the mission with as less

software functions as possible.

F28 High Y2 WP6 / WP7 Safety relevant

SEC-21 Security mechanism towards Man-In-

the-Middle and/or replay attacks

should be implemented.

DoW

Medium Y2 WP6 / WP7 Depends on the defined

security level (SL)

Page 55 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Safety and security requirements (SEC)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

SEC-22 Security mechanisms for end-to-end

communications shall be implemented,

if possible.

DoW

For SL(0): Low

Others: High

Y2 WP6 / WP7 At the Sensor Node level, it is

possible that some of them

don’t have the

capability/processing power

for standard security such as

HTTPS.

Depends on the defined

security level (SL)

Similar to SEC 5 and SEC 21

2.8. Cloud services requirements

Cloud services requirements (CLOUD)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

CLOUD-1 AFarCloud users shall be able to

provision resources without any

DoW High Y1 WP7 Self-service with ease of use - The service

management functionality should tie into

Page 56 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Cloud services requirements (CLOUD)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

interaction with the service provider’s

staff.

the broader offering repository such that

defined services can be quickly and easily

deployed and managed by the end user.

CLOUD-2 AFarCloud users shall be able to access

resources over the Internet using

ubiquitous clients (e.g., a web browser)

from a range of client devices (e.g.,

smartphones, tablets, laptops).

DoW High Y1 WP7 Ubiquitous access to cloud computing

means that any person with the right

credentials, from any device through any

network connection and from any country

should be able to access the platform.

CLOUD-3 AFarCloud platform shall support

resource pooling, multi-tenancy and

dynamic assignment of computing

resources based on customer demand

DoW High Y2 WP7 Multi-tenancy ensures that every customer

is on the same version of the software. As

a result, no customer is left behind when

the software is updated to include new

features and innovations.

CLOUD-4 AFarCloud platform shall support rapid

elasticity so that resources can be quickly

provisioned and released, sometimes

automatically, based on demand

DoW High Y1 WP7 The cloud platform should ensure that

applications have the exact system

capabilities they need at all times. The cloud

hosting provider should allow clients to

expand or minimize services as needed,

Page 57 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Cloud services requirements (CLOUD)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

resulting in an efficient and convenient

scaling process.

CLOUD-5 AFarCloud platform should support

metering of services compatible with

usage and charging models

DoW Medium Y2 WP7 Service Management - To productize the

functionality of cloud computing, it is

important that administrators have a simple

tool for defining and metering service

offerings. A service offering is a quantified

set of services and applications that end

users can consume through the provider —

whether the cloud is private or public.

Service offerings should include resource

guarantees, metering rules, resource

management and billing cycles.

CLOUD-6 Updated Heterogeneous Systems

Support - Cloud management shall

leverage the latest hardware,

virtualization and software solutions with

high-availability and resilience.

DoW High Y1 WP7 To be fully reliable and available, the cloud

needs to be able to continue to operate

while data remains intact in the virtual data

centre regardless if a failure occurs in one or

more components. Additionally, since most

cloud architectures deal with shared

Page 58 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Cloud services requirements (CLOUD)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

resource pools across multiple groups both

internal and external, security and multi-

tenancy must be integrated into every

aspect of an operational architecture and

process. Services need to be able to provide

access to only authorized users and in this

shared resource pool model the users need

to be able to trust that their data and

applications are secure.

Page 59 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 2.9. Cloud resources monitoring requirements

Cloud Resources Monitoring requirements (CLDMON)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

CLDMON-

1

The AFarCloud cloud resource monitoring component

shall monitor the availability of the contracted cloud

resources. This availability shall be measured in

principle as uptime and shall be compared with the one

offered by the cloud service provider (CSP) in its Cloud

Service Level Agreement (CSLA). In the event the

threshold is passed, an alarm shall be triggered, and

the user informed.

DoW High Y1 (first

version)

WP4 Monitoring of the

availability of a cloud

service offering

CLDMON-

2

The AFarCloud cloud resource monitoring component

shall monitor the performance of the contracted cloud

resources. This performance metric shall be compared

against a metric inserted by the user. In the event the

threshold is passed, an alarm shall be triggered, and

the user informed.

DoW High Y2 WP4 Monitoring of the

performance of a cloud

service offering

CLDMON-

3

The AFarCloud cloud resource monitoring component

shall monitor the response time of the contracted cloud

resources, initially taking also into consideration the

DoW High Y2 WP4 Monitoring of the

response time of a

cloud service offering

Page 60 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Cloud Resources Monitoring requirements (CLDMON)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

latency of the network. The response time shall be

compared against a value inserted by the user. In the

event the threshold is passed, an alarm shall be

triggered, and the user informed.

CLDMON-

4

The AFarCloud cloud resource monitoring component

shall monitor the use of resources in the Virtual

Machine (VM).

DoW High Y2 WP4 Monitoring of the use of

resources

Among others, it is

expected to measure

the following aspects:

memory use, disk use,

CPU use (%). Other

values to measure the

use of resources will be

evaluated in the course

of the project. A formula

is expected to be

generated for this

purpose.

Page 61 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Cloud Resources Monitoring requirements (CLDMON)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

CLDMON-

5

The AFarCloud cloud resource monitoring component

shall monitor the workload of the jobs and the

timeliness of the job execution. This will in particular

provide answers on statistical distribution of job

execution time to allow detecting outliers in the job

execution and providing means for adaptation of how

jobs are scheduled.

DoW High Y2 WP4 Monitoring of the

workload of the jobs

deployed in the cloud

CLDMON-

6

All violations shall be logged, and the log shall be

obtainable by the users. The log shall hold the following

parameters and values:

• CSP Id/info

• Violated parameters

• Value of violated parameters

• Time and date of parameters

The log should be read only, hashed and signed by the

AFarCloud cloud resource monitoring component.

DoW High Y2 WP4 Log of violations

CLDMON-

7

The component Cloud Resource Monitoring should

include a User Interface where the following data can be

included by the user:

DoW Medium/High Y1

(availability)

/ Y2

WP4 User Interface of Cloud

Resource Monitoring

Page 62 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Cloud Resources Monitoring requirements (CLDMON)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

• Endpoint of the cloud service contracted (e.g.,

IP)

• Availability as per the SLA

• Maximum response time (in ms)

• Maximum Performance (TBD)

Furthermore, the UI shall also provide a dashboard

where the monitored values can be easily seen by the

operator of the application.

Page 63 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

2.10. Development Tool requirements

Development Tool requirements (DEV)

Req no. Req. Description Source Priority Deadline
Responsible

WP
Comment

DEV-1 The development of dependable

autonomous systems shall be assisted by

a design flow management tool.

DoW

(TO5)

High Y2 WP6 A design flow management tool ensures a

definable development process from the

requirements gathering process over to the

different design phases until to the final

validation process.

DEV-2 The implementations shall be validated by

proper validation methods.

DoW High Y2 WP6, WP7 A validation verifies the correct

implementation and ensure a safe and

secure operation. MoMuT tool is being

developed for the model-based test case

generation.

DEV-3 The collection of safety evidences shall be

assisted by AVLs FSM-Tool.

DoW High Y2 (M22) WP6 A Functional Safety Management Tool

should help the consortium responsible for

managing safety activities to collect

evidences and coordinate safety tasks.

DEV-4 A set of simulated tests should be run

prior to any software upgrade.

DoW Medium Y1 WP7 A complete set of tests should be defined

and developed, in order to ensure the proper

Page 64 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 function of all the modules whenever any

change is made in the system. This set

needs to be adapted over the time to

consider and test the new features.

DEV-5 The LoRa network should be

implemented and validated for multi-robot

scenarios.

DoW Medium Y1 WP7 Using multiple UAVs simultaneously

requires a stable and reliable communication

between them. Using DDS to communicate

requires the proper setup of a network.

DEV-6 The multispectral images and passive

sensors dataset should contain data from

fields others than the demonstrators.

F20/F6/F3 Medium Y3 WP6 The quality of the fields’ condition evaluation

benefits from the existence of more data.

Having data (properly labelled) from fields

around the world, not only helps in the

evaluation of a test field, but also prevents

the possible development of local-specific

algorithms (due to some possible

characteristic that is common to the small set

of the demonstrators but is not common to a

wider set).

DEV-7 The communication times of passive

sensors should be properly evaluated.

DoW Medium Y2 WP3, WP6 The aerial vehicles read the passive sensors

data by descending near to them, and then

generate the signals to communicate.

Knowing the times needed for this process is

Page 65 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 crucial to the mission planning, as the flight

time and manoeuvres needed are greatly

dependent on the available energy/battery.

DEV-8 The design flow management tool shall

support the security risk analysis process

– according IEC62443

DoW High Y1 WP6, WP7 The CSFlow tool supports the security risk

analysis process for a selected real

demonstrator part (Austrian Use Case) and

the AFarCloud architecture in general.

DEV-9 The design flow management tool shall

support security level implementation

process for the defined security zones and

conduits - according IEC62443

DoW High Y2 WP6, WP7 The CSFlow tool supports the security level

implementation process for the defined

security zones and conduits of a selected

real demonstrator (Austrian Use Case) and

the AFarCloud architecture in general.

DEV-10 The design flow management tool shall

support the selection of proper security

counter measurement (requirements) and

the assignment of the final archived

security level

DoW High Y3 WP6, WP7 The CSFlow tool supports the selection of

proper security counter measurement

(requirements) and the assignment of the

archived security level of a selected real

demonstrator (Austrian Use Case) and the

AFarCloud architecture in general.

Page 66 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

3. Data Requirements

This chapter gathers the kind of information that will be used and exchanged inside AFarCloud. The purpose is to list the data that needs to be

included in the AFarCloud information model to be defined in Task T2.4.

3.1. Regions

Regions will be defined by the position of the centroid (latitude and longitude) of the area and the width and length of the area. This applies to:

• Weeds region: area where weeds are found. Multiple weeds regions could be sent simultaneously to the MW.

• Dead plants region: area where dead plants are found. Multiple dead plant regions could be sent simultaneously to the MW.

• Water stress region: area where water stress is detected. Multiple water stress regions could be sent simultaneously to the MW.

• Generic/non-specific area: area that does not have a specific category

Data Units Data type Range of values Granularity/ Resolution

Invalid/

default value

Description/comments

Area:

Latitude

decimal degree Double From -90 to +90 0.00001 decimal degree Invalid: -1000 Latitude of the centroid of the area

Area:

Longitude

decimal degree Double From -180 to + 180 0.00001 decimal degree Invalid: -1000 Longitude of the centroid of the area

Page 67 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Data Units Data type Range of values Granularity/ Resolution

Invalid/

default value

Description/comments

Area:

Width

Meter Float From 0 to 500 0.01 meter Invalid: -1 Width of the region expressed in

meters.

Area:

Length

Meter Float From 0 to 500 0.01 meter Invalid: -1 Length of the region expressed in

meters.

3.2. Environment data

Data about the environment normally provided by observations from the sensors or exchanged with other systems.

Data Units

Data

type Range of values

Granularity/

Resolution

Invalid/

default value

Description/comments

Air relative

humidity
% float 0-100% 0,1% Data provided by sensors.

Air quality

(eCO2 and

eTVOC)

 float Data provided by sensors.

Air temperature ºC float -40 to 80 0,1ºC Data provided by sensors.

Air ambient

temperature
ºC float -40 to 100 0,01ºC Data provided by sensors.

Page 68 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Data Units

Data

type Range of values

Granularity/

Resolution

Invalid/

default value

Description/comments

Atmospheric

Pressure
hPa float 300 – 1100 0.01 Data provided by sensors.

CO2

equivalents

ppm integer 250 - 32768 1

Light Sensors lux Integer Data provided by sensors.

Rainfall Millimetres (mm) float Data provided by weather service.

Wind speed meters/second (m/s) Float Data provided by weather service.

Wind direction

N, NE, E, SE, S,

SW, W, NW Integer

3.3. Crops and soil data

Data related to crops.

Data Units Data type Range of values

Granularity/

Resolution

Invalid/

default value

Description/comments

Diameter plant

(Dendrometer)

cm float 0-5
 Invalid: -1 Data provided by a dendrometer

Page 69 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Data Units Data type Range of values

Granularity/

Resolution

Invalid/

default value

Description/comments

Equivalent

Total Volatile

Organic

Compounds

(eTVOC)

ppb integer 0 - 32768 1

Invalid: -10 Data provided by sensors

Leaf wetness float 1-15

Soil moisture % Integer ~250 - 820 1 Invalid: -1 Data provided by sensors

Soil volumetric

water content
%

float Dielectric constant 10-80 0.05
Invalid: -1 Data provided by sensors

Soil total ions

conductivity
S/m

float Conductivity 0-120 mS/m; 0.1
Invalid: -1 Data provided by sensor

Soil

temperature
ºC float

-55 - 125 0.0625 - 0.5
Invalid: -100 Data provided by sensor

Water used to

irrigate Litres (l) Float

Invalid: -1 AS-04 is interested in measuring the

amount of water needed to obtain a

ton of grapes. Rainfall should also be

considered.

Page 70 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Data Units Data type Range of values

Granularity/

Resolution

Invalid/

default value

Description/comments

Dry matter g/kg Float 0 - 1000
 Invalid: 0-1

Amount of dry matter (DM) in

sample (from sensor)

D-value g/kg Float 0 - 1000
Invalid: 0-1

Dry matter digestibility / DM (from

sensor)

Crude protein g/kg Float 0 - 1000
 Invalid: 0-1

Amount of Protein in sample (from

sensor)

NDF-fiber g/kg Float 0 - 1000
 Invalid: -10

Amount of Non-Digestible Fiber in

sample (from sensor)

Grass height cm Float 0 - 100
 Invalid: -10

Measured grass height (entered

manually)

Yield sample

weight

g/m^2 Float 0 - 10000
Invalid: -10

Weight of a yield sample (entered

manually)

Fresh yield kg/ha Float 0 - 100000 Invalid: -10 Fresh yield per hectare (calculated)

Dry yield kg/ha Float 0 - 100000
 Invalid: -10

Dry yield calculated from DM and

fresh yield (calculated)

Page 71 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 3.4. Livestock and milk quality data

Data related to cows, their feeding and the quality of the milk.

Data Units

Data

type Range of values

Granularity/

Resolution Invalid/ default value

Description/comments

Acetic acid

concentration - rumen
mmol/l float 20 - 120 0,1

Value, Quality, Time

(VQT) format

Data provided by ruminal probe.

Usual value: 45 - 100

Activity steps/day integer 0 – 50.000 1 VQT format

Data provided by sensor/actuator.

Pedometer activity data – steps.

Usual value: 180 per hour

Animal body

temperature
ºC float 20 - 50 0,1 VQT format Data provided by sensor

Butyric acid

concentration - rumen
mmol/l float 5 – 30 0.1 VQT format

Data provided by ruminal probe.

Usual values: 8 - 20

Dissolved ammonia

concentration - rumen
mmol/l float 2 – 30 0.1 VQT format

Data provided by ruminal probe.

Usual value: 5 - 20

Dissolved methane

concentration - rumen
mmol/l float 0.1 VQT format Data provided by ruminal probe.

Lactic acid

concentration - rumen

mmol/l float 0 - 100 0,1
VQT format

Data provided by ruminal probe.

Usual value: 0 – 3.3

Page 72 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Data Units

Data

type Range of values

Granularity/

Resolution Invalid/ default value

Description/comments

Milk - somatic cells cells/ml integer 0 - 5 000 000 1 VQT format Data provided by the Herd

management system.

Milk conductivity mS/cm float 5 - 30 0,1 VQT format Data provided by the herd

management system. Usual value:

4 - 15

Milk temperature
ºC float 0 - 40 0,1 VQT format

Data provided by sensor or milking

machine/robot.

Milk yield L float 0 - 150 0,1 VQT format Data provided by the herd

management system. Usual value:

0 - 80

Position: Latitude decimal degree float From -90 to +90 0.00001

decimal

degree

Invalid: -1000 Animal position. GPS/GNSS data

Position: Longitude decimal degree float From -180 to +

180

0.00001

decimal

degree

Invalid: -1000 Animal position. GPS/GNSS data

Propionic acid

concentration - rumen

mmol/l float 5 - 60 0,1 VQT format Data provided by ruminal probe.

Usual value: 10 - 40

Page 73 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Data Units

Data

type Range of values

Granularity/

Resolution Invalid/ default value

Description/comments

Ruminal ORP (oxido-

reduction potential)

mV float -1000 - 0 1 VQT format Data provided by ruminal probe.

Usual value: -300 to -100

Ruminal pH pH float 4 - 9 0,01 VQT format Data provided by ruminal probe.

Usual value: 5 - 7.5

Ruminal temperature °C float 20 - 50 0,1 VQT format Data provided by ruminal probe.

Usual value: 32 - 42

Cattle weight when

fattening starts

decimal degree

(Kg)

Float 0.0 to 1000.0 Kg

Kg = kilograms

0.5 Kg 0.0 Kg Cow-related data

Fertility rate per year Calf (Number

of calves born

per year)

One calf per

year and cow

is the optimal

rate

Integer 1-3 (calves) 1 calf 0 calves Cow-related data

Calving Dimensionless Boolean True/false The cow is giving birth

Page 74 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Data Units

Data

type Range of values

Granularity/

Resolution Invalid/ default value

Description/comments

Behaviour habits (in

heat animals)

In heat time

happens in

periodic

intervals (the

fewer days, the

better). About

17 days of the

heat cycle, the

heat lasts from

a few hours to

a day.

Days

Integer 0 to 30 1 0
The cow is in a state where she is

ready to mate with a male animal

Watering

Measured as

an average of

litres of water

drunk by 20

calves per year

Integer to 10000 litres 1 litre 0 litres

Page 75 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Data Units

Data

type Range of values

Granularity/

Resolution Invalid/ default value

Description/comments

Rumination

seconds

(timespan, e.g.,

3 hours

grazing, 2

hours

ruminating,

etc.)

Integer number

Integer 0-36000 s 1 s 0 s The cow is ruminating

Dying off Dimesionless Boolean True/false The cow is in critically bad health

Vaccination t
€ per head of

livestock
Float

0.0 to 10000.0 €

€ = Euro

0.5 € 0.0 €

Vaccines received by the cow

Number of kg of

feed/animal year

decimal degree

(Kg)

Float 0.0 to 1000.0 Kg

Kg = kilograms

0.5 Kg 0.0 Kg

Feed costs per year
decimal degree Float 0.0 to 10000.0 €

€ = Euro

0.5 € 0.0 €

Note/remark on animal string - -

Personnel comments on animal

health status, treatment, …

Page 76 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 3.5. Ground Vehicle data

Data related to ground vehicles.

Data Units Data type

Range of

values

Granularity/

Resolution

Invalid/

default

value

Description/comments

Hitch Draft Sensor kn Float -60kn to +

60kn

0.01kn

Hitch Position

Sensor

Percentage (%) Float 0 to 100% 0,10%

Inertial sensor Double Inertial measurement units with:

acceleration (m/s/s), angular rate

(rad/s), magnetic field (Gauss),

orientation(rad/quaternions/rotation

matrix), pressure (mPa)

Inner status

Signals

 Integer From 0 to x 1 Default: 0 Gears, Diagnosis information, etc.

Linear Position mm Float 0.5 – 2 mm 0.1 mm To measure the linear movement.

Position: Latitude Degrees Integer From -90º to

+90º

1º Invalid: -

1000º

Ground position. NMEA Standards -

GNSS Data

Page 77 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Data Units Data type

Range of

values

Granularity/

Resolution

Invalid/

default

value

Description/comments

Position: Longitude Degrees Integer From -180º to

+ 180º

1º Invalid: -

1000º

Ground position. NMEA Standards -

GNSS Data

Speed of the

vehicle

kph Float From 0 to

40kph

1/256 kph Invalid: -1 Velocity

Speed sensors rpm Float from 0 to

8031rpm

1/8 rpm Invalid: -1 Engine Speed, Transmission speeds,

Powertake Off

Total fuel used l Float 0.5 Invalid: -1

Fuel level Percentage Float

From 0.0% to

100.0% 0.4% Invalid: -1

Number of km

travelled per

ground vehicle

Number of driving

hours per ground

vehicle

h

3 minutes

This information is needed to check if
the farmer reduces costs in the use of
vehicles (i.e., looking for cows).

To be calculated by checking the
timestamp related to the moment a
mission starts and ends.

Page 78 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Data Units Data type

Range of

values

Granularity/

Resolution

Invalid/

default

value

Description/comments

Amount of

fertilizers/pesticides

applied per ground

vehicle

l Float This parameter should be calculated
per mission.

Only for ISOBUS tractors and
ISOBUS implements.

Identification of the

tractor

 String

3.6. UAV data

Data Units Data type

Range of

values

Granularity/

Resolution

Invalid/

default

value

Description/comments

UAV Identifier Integer

Position: Latitude
Decimal Float From -90 to

+90

0.00001

decimal degree

Invalid: -

1000

Vehicle position. GPS/GNSS data

Position: Longitude
Decimal Float From -180

to + 180

0.00001

decimal degree

Invalid: -

1000

Vehicle position. GPS/GNSS data

Page 79 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Data Units Data type

Range of

values

Granularity/

Resolution

Invalid/

default

value

Description/comments

Position: Altitude
Decimal Float 0.0001 m

Invalid

Min.Float

Absolute, 0 at sea level

Speed of the vehicle
Decimal Float

From 0 to

20 m/s 0.1 m/s Default: 0

Orientation: Yaw Decimal Float [0, 180] 0.1 Invalid: -1

Orientation: Pitch Decimal Float [0, 45] 0.1 Invalid: -1

Orientation: Roll Decimal Float [0, 45] 0.1 Invalid: -1

Battery: capacity Decimal Float Invalid: -1 Capacity in Ah (last full capacity)

Battery: percentage Decimal Float [0, 1] Invalid: -1 Charge percentage on 0 to 1 range

Page 80 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

4. General Architecture

4.1. Architecture approach for sharing of resources

among farms

There are different alternatives when defining the type of data access for farms. Depending on

whether there will be data sharing or not between farming entities, different types of architecture

designs can be specified:

a. Isolation: each scenario is isolated and there is neither sharing of information nor services

among farms. Each scenario would deploy its own AFarCloud architecture, with its own

database in an isolated and dedicated repository in the Cloud. Data is owned by the farm

and being in the Cloud guaranties persistence of resources and data accessibility from

anywhere.

b. Federation: In this case, some scenarios share information or services among them. Each

scenario would deploy its own AFarCloud architecture, with its own database in an isolated

and dedicated repository in the Cloud. However, in this case, some farms are federated,

which implies some resource or data sharing. Replication services would be implemented

to add the information to be shared to all the databases that are federated.

c. Centralization: all the scenarios share the same AFarCloud database, which is deployed

in the Cloud. Access to the information should be filtered by the farms.

In AFarCloud, we propose a combination of these data sharing scenarios as illustrated in Figure 1.

Figure 1: AFarCloud data sharing perspective

Page 81 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Data gathered from the Farm Management System, will be pre-processed and stored in a private

cloud database in the farm level (isolation). The data processing will take place locally using

centralised algorithms.

It will be possible to forward to federation some processing results that produce critical data (such as

key performance indicators or events e.g., diseases). Each participant will be able to select among

different federations (e.g., all farms in the same region or in the country or all farms with vineyards,

etc). AFarCloud should be able to propose the most relevant/appropriate federations.

Additionally, it may be interesting that some of the data maintained in the federation level could be

sent or processed in a central level (centralisation). The results obtained from central processing

would benefit all the participants.

This architecture requires a specific amount of processing power and storage capacity that will be

obtained with the help of cloud services.

4.2. Functional and components architecture

The AFarCloud platform will consist of three main functional components:

• The Farm Management System

• The Semantic Middleware

• Deployed Hardware

Besides the above-mentioned functional components, the AFarCloud platform will interconnect with

other data sources like third-party data and legacy systems databases. Figure 2 depicts in more detail

the functionalities and protocols covered in AFarCloud while Figure 3 represents the share of

responsibilities among WPs for the AFarCloud architecture.

Page 82 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Figure 2: AFarCloud architecture

Page 83 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Figure 3: How WPs are reflected in the AFarCloud architecture

An initial description of each of these functional components is outlined below.

4.2.1. The Farm Management System

Description:

The Farm Management System will offer a Mission Management Tool (MMT), a Decision Support

System (DSS), a system configurator and applications for the user to manage and monitor the whole

system, plan cooperative missions involving unmanned aerial vehicles and ground vehicles ranging

from fully autonomous UGVs to legacy systems; configure the above-mentioned systems including

their key hardware components (mission relevant sensors and other component important for

performing a mission); and make decisions pre-, during-, and post-mission.

Functionalities:

Page 84 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 The main functionalities identified until now (M12) to be provided by this component are described

below:

• MMT (incl. graphical user interface):

o Maps with locations of ground/aerial vehicles and sensors (if possible)

o Alarms

o Mission management of ground/aerial vehicles:

▪ Mission planning and control

▪ Mission progress monitoring

▪ Ground/aerial vehicle status monitoring

• Decision support system pre-, post-mission, and for real-time data analysis during the mission:

o Crop monitoring, including vineyard related processes

o Animal health monitoring

o Milk quality monitoring

• System configuration:

o Configuration of the monitoring functionalities based on scenario selection;

o Provide mechanisms to support the configuration of the system including UAVs, GVs

and agricultural machinery prior to a mission in order to make sure that they are

prepared for the mission and that the user can collect and analyse status reports;

o Notification of available firmware updates for sensors, actuators and GVs;

o Configuration of the sampling rate of sensors;

o Sending commands to actuators;

o Alarms configuration: definition of the alarms to be provided by the MMT to the

operator;

o (Graphical) interface for registering ground/aerial vehicles, actuators and sensors in

the farm. Through this interface, the operator will provide the input information that will

be used by the Device Registry of the Semantic Middleware.

• Cyber security management

• Reasoning based on existing data: e.g., to detect if an animal exits a dedicated area; to detect

collision risks for vehicles, etc.

Page 85 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 4.2.2. The Semantic Middleware:

Description:

A middleware is a software layer used to hide the underlying complexity of hardware, in distributed

systems, so that application layers can access to that hardware in a unified way. The AFarCloud

middleware will use semantic models, specified by an ontology to abstract the heterogeneity of the

underlying hardware, and to ensure that all information is stored according to a common information

model that guaranties interoperability. The semantic middleware will act as a communication

centralizer, disseminating messages between the Farm Management System and the hardware

deployed.

The Semantic Middleware will be in charge of unifying data coming from, or directed to, different types

of cyber-physical systems deployed:

• WSNs, sensors and actuators;

• Semi-autonomous ground vehicles: these vehicles will be able to autonomously perform tasks

defined by the Farm Management System. It is important to highlight that, in AFarCloud,

automation for ground vehicles is related to task execution (i.e., activation of an

implement when a tractor reaches a given location), and not to vehicle navigation.

• Autonomous aerial vehicles: these vehicles will be able to autonomously carry out missions

defined by the Farm Management System. Fully autonomous navigation will be part of the

mission for aerial vehicles.

Considering the heterogeneous nature of the elements deployed in the hardware layer, the semantic

middleware will offer different types of interfaces:

• DDS interface for fully autonomous vehicles able to implement autonomous navigation (i.e.,

UAVs): The Data Distribution Service (DDS) for Real-Time Systems protocol is a standard

defined by OMG2. DDS provides a communication environment based on a publish/subscribe

architecture which is very suitable for networks with moving nodes. The main DDS features

are listed below:

o Reliable, scalable and real-time data exchanges using a publish/subscribe pattern;

o Automatic discovery of connected entities;

2 https://www.omgwiki.org/dds/

Page 86 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 o Automatic Quality of Service management for control over every aspect of data

distribution, such as data durability (i.e., data persistency), resource usage, and

reliability (i.e., guarantee the delivery of messages);

o Management of the data persistency: time and space decoupled reception and delivery

of messages:

▪ Space decoupling: IPs of the DDS nodes do not need to be static.

▪ Time decoupling: if desired, nodes can receive multiple messages addressed

to them, sent even before they are connected to the network. This is especially

suitable for handling of unreliable environments with communication channels

of poor quality and/or high latency, or to manage alerts (i.e., an alarm is sent to

a UAV to avoid collision but at that moment, the UAV loses connectivity. As

soon as the connectivity is established, the UAV will receive the alarm)

▪ Unlimited buffer: DDS nodes can serialize unlimited buffers of samples.

Multiple samples per topic are allowed. Even nodes that join late to a DDS

partition will be able to receive all samples previously addressed to them.

In AFarCloud, all communications that are performed throughout both ends of the system (the

Farm Management System and Deployed Hardware) related to the command and control of

fully autonomous vehicles, will go through the DDS interface of the middleware, as DDS

guaranties data persistency (no data is lost) and a real-time delivery of the data (essential for

autonomous vehicles able to perform missions). The combination of both features, together

with the deployment of data analytics techniques, would even allow the re-planning of ongoing

missions if necessary. Thus, this DDS interface will be used by all aerial vehicles able to carry

out autonomous AFarCloud missions defined by the Farm Management System and to send

the data gathered during missions back to the middleware. All data exchanges will be

compliant with the agreed data model.

DDS compliant vehicles will be able to directly exchange DDS messages between themselves.

These messages would be defined by the project, in case it is needed: e.g., two UAVs could

share an anti-collision plan (safety related plans).

• ISO-XML/MQTT interface for compatible semi-autonomous ground vehicles able to implement

tasks autonomously: Due to their lack of auto-steer abilities, semi-autonomous ground

vehicles will not be able to perform standard missions that involve autonomous navigation

(i.e., go to a waypoint) defined by the planning algorithms in the Farm Management System.

Page 87 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 However, they will be able to perform special missions defined by the Farm Management

System, involving the execution of tasks autonomously, supervised by vehicle operators. To

carry out these tasks, they will rely on their implements. The communication between the

ISOBUS compatible implements of a semi-autonomous ground vehicle and the Farm

Management System is standardized and simplified through the use of ISO-XML files. The

ISO-XML format (described on the ISO 11783-Part 12 standard) is the only standardized way

defined by ISOBUS for exchanging information between ISOBUS compatible entities.

The Semantic middleware will offer an interface able to generate an ISO-XML file to define

each of these special missions. ISO-XML files will be manually loaded to semi-autonomous

ground vehicles. Besides, this interface will also offer means to convert manually loaded XML

files of log data collected from the CAN-bus of ground vehicles during a mission, in order to

be uploaded into the middleware.

The Semantic Middleware will also offer a MQTT link that will be used by semi-autonomous

ground vehicles to send data of their onboard sensors, gathered during the execution of

missions.

MQTT (Message Queuing Telemetry Transport) is a publish/subscribe communication

protocol standardized by ISO (ISO / IEC PRF 20922). It is light weight, open, simple, and

designed so as to be easy to implement. These characteristics make it ideal for use in many

situations, including constrained environments such as for communication in Machine to

Machine (M2M) and Internet of Things (IoT) contexts where a small code footprint is required,

network bandwidth is at a premium, and low energy consumption is highly desirable. Due to

its characteristics and features it is considered as an optimal protocol to employ in a context

such as the one posed by AFarCloud.

• MQTT or REST interface for compatible WSNs, sensors, actuators: The Semantic Middleware

will offer two different interfaces (MQTT and REST) to all devices responsible for collecting

measurements (WSN, standalone sensors, etc.) or for implementing actions (actuators). By

exposing these two interfaces, the Semantic Middleware guarantees compatibility not only

with the MQTT and REST protocols, but also with the CoAP protocol, since it is based on the

REST model.

Most of the AFarCloud middleware is hosted by the cloud infrastructure that will be deployed in the

project, to take advantage of the features provided by cloud resources. Cloud computing is based on

the use of remote servers hosted on the Internet to manage infrastructure and data, which provides

Page 88 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 many benefits such as flexibility and scalability in infrastructure design, cost reduction or guaranteed

reliability. Reliability is reached through cloud monitoring, which uses automated tools to manage the

cloud infrastructure and services. Besides, a cloud deployment can be used no matter the type of

architecture that will be adopted finally (isolated, federated, centralized). The AfarCloud cloud

infrastructure will define interfaces based on a set of REST services.

Other components of the middleware need to be deployed at the Edge and/or in the facilities of the

farm. These components are the following:

• The Image Processing Platform (IPP): due to the large size of the images needed by this

component and taken by UAVs, the loading of these images is carried out offline (i.e., through

a memory stick) for Y1, to minimize errors in the transmission of files and speed up the process

of loading. From Y1 on, we will study the viability of doing some pre-processing onboard the

UAVs in some of the cases.

• The DDS Manager: as this module is responsible for processing the real time communications

with UAVs, it is deployed as close as possible to the place where data is generated, to

minimize latencies.

• The Data Pre-Processor and the Data Fusion: processing data close to the source reduces

latency as data does not have to traverse over the network to the Cloud for processing. By

only sending important data over the network, the edge computing reduces both the data

traversing the network, and the processing time.

Functionalities:

The main functionalities identified up to now (M12) is to be provided by the Semantic Middleware are

described below:

• Data Storage:

o A set of repositories (semantic, SQL and NoSQL) to store data in the cloud. In addition,

as in AFarCloud not all the knowledge extraction will be done at the cloud level and

there will also be intelligence at sensor level (edge level) when needed, the platform

will provide an Edge Data Storage to give support in local processing done by the Data

Pre-Processor and the Data Fusion. The Edge Data Storage is out of the scope of

D2.2.

o As explained in Section 4.1, a three-level cloud repository is proposed:

Page 89 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 ▪ Local cloud repository (Y1): it’s the private cloud repository of an individual

farm.

▪ Federated cloud repository (from Y1 on): it’s a common cloud repository shared

by all individual farms that are part of a specific federation of farms. Each

participant should be able to select among different federations: e.g., all farms

in the same region. The data to be shared in this common federated cloud

repository must be agreed during the project. For the moment, several ideas

have been proposed:

• Sharing of high-level information inferred in farms: e.g., animal

behaviour (why do cows give more milk in a farm?), gas emissions (why

do cows emit less methane in a farm?), etc. Data too dependent on

location and weather conditions is considered not relevant to be shared.

• Sharing of resources like vehicles or human power between neighbour

farms: e.g., calendar of occupation of resources.

▪ Centralized repository (from Y1 on): a common repository shared by all

scenarios. The data to be shared in this common centralized cloud repository

must be agreed during the project.

o Semantic cloud repository: a SPARQL server that provides access to the AFarCloud

ontology

o Historical data cloud repository: a SQL Database

o Big data cloud repository: a NoSQL Database

o Sensitive data will be encrypted

• Cloud Resources Monitoring:

o Monitoring of the liveliness of all the middleware components deployed in the Cloud

o WSN monitoring

o Other sensors monitoring

• Data Interoperability (by means of a common AFarCloud Data Model):

o Provides a Common Data Model whose purpose is to define a common view for the

real environment that can be achieved by heterogeneous cyber-physical systems (e.g.,

vehicles, sensors, actuators, MMT, etc.) and humans, to enable the integration and

cooperation of them.

o The data model will be composed of three parts:

Page 90 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 ▪ The semantic data model will represent the concepts managed by the

AFarCloud project. These concepts and their associated properties will be

depicted in form of graphs and formalized in the AFarCloud ontology.

▪ The relational data model will represent the model of the SQL tables of the

AFarCloud database;

▪ The non-relational data model will represent the model of the NoSQL database

in AFarCloud.

• Data Management:

o Data Access Manager: CRUD operations to the cloud repositories (the AFarCloud

ontology, the SQL and non-SQL databases). This component will allow, for example,

to manage connections with the databases, or to execute SQL, NoSQL and SPARQL

queries.

o Data Query: to process any query (semantic, relational or non-relational) to store or

retrieve data. It is the access point that other components must call to ask for or store

data, without having to worry about where the data are stored or the syntax of the

query. For example, the Data Query could offer a method to get the location of a cow

(e.g., getCowPosition). As the Data Query knows where this information is stored, it

will create the specific SPARQL, SQL or NoSQL query and will send it to the Data

Access manager to be processed. This provides the user an abstraction level on the

data storage infrastructure. This component will also be able to aggregate information

stored in different cloud repositories.

• Streaming Engine:

o Management of the delivery of real time data streams read from the AFarCloud cloud

repositories to the DSS in the Farm Management System.

o The component will be implemented in Apache Kafka.

• Device Management:

o Device Registry:

▪ Management of the registry of aerial/ground vehicles, actuators, sensors,

animals, etc. in the farm. This process is performed every time a new element

joins the AFarCloud platform.

o Device Manager:

▪ Management of specific operations to be implemented by standalone devices

or groups of devices:

• Notification of software updates (WSNs, sensors, actuators, gateways,

etc.)

Page 91 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 • Actuators commands

• Requests on devices (WSNs, sensors, gateways): e.g., change on

sampling rate

▪ Management of the data coming from standalone devices or groups of devices.

▪ Device Manager manages data flows with connected devices (e.g., sensors,

actuators, gateways, WSNs, etc.) while Mission Manager manages data flows

with connected vehicles (i.e., GVs, UAVs).

• Mission Management:

o Mission Manager:

▪ Delivery of the mission to the semi-autonomous ground vehicles and UAVs.

▪ Delivery of events to the semi-autonomous ground vehicles, UAVs or other

(farming) devices/systems. We will consider as events all high-priority actions

or data (i.e., command to abort a mission) sent by the middleware that should

be considered by the devices deployed in the Hardware. Events will be

generated by the Farm Management System as a result of an analysis of data.

▪ Management of the data coming from vehicles (result of the mission, alarms,

data from sensors and actuators on board, etc)

o Mission Processing & Reporter: mission status report management. Validation of the

mission status report to ensure that this information is clean, and its format is correct

o Alarm Processing & Reporter: management of alarms from aerial/ground vehicles,

sensors and actuators. Validation of alarms to ensure that this information is clean,

and its format is correct. We consider as alarms messages sent from a device, sensor

or vehicle to the middleware to inform about abnormal behaviour at equipment or

functional levels.

o Environment Reporter: deals with raw sensor data from aerial/ground vehicles and

sensors, checking basic aspects (e.g., validating ranges), before forwarding them to

the Data Pre-Processor, and/or before storing them in historical DB, both during

missions (online), and pre- or post- mission (offline). The sensor reports sent by this

component can be used by the Farm management System to be aware of any sensor

failure(s) and react upon it if necessary.

o Data Pre-Processor: performs online (raw) sensor data cleaning and filtering, to avoid

missing values, impossible combinations and outliers.

o Data Fusion: aggregates data already pre-processed by the Data Pre-Processor, from

multiple sources, providing a more consistent, accurate and useful information. This

data could be associating vehicles proprioceptive data to exteroceptive data acquired

Page 92 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 by embarked environmental sensors. Data Fusion should be done right after data pre-

Processing.

o Knowledge Extractor: exploits environment data (raw, pre-processed, fused or

including metadata) related to livestock and/crops, to extract knowledge. The latter

should be stored at the cloud repositories to be eventually used by MMT/DSS in the

Farm Management System if needed. The outcomes from the Knowledge Extractor

are validated by the Environment Reporter.

• Image Management:

o Image Processing Platform (IPP):

▪ The IPP will be a ground station deployed at the Edge of the architecture (in

the farm facilities) that will process the images provided by sensors embarked

in the UAVs. The images of a flight will be stored in a memory stick or SD card,

and downloaded to the IPP.

▪ By means of some deep learning algorithms, the IPP will “stitch” all images in

a unique image. This image is known as a georeferenced/orthorectified mosaic.

▪ In the IPP, this image will be processed by a set of image processing

algorithms. As a result of this process, the platform will return a series of data.

Three different customizations of the IPP will be provided, in order to adjust to

each of the demonstrator needs: (i) livestock location and tracking; (b) vigour,

water stress and weeds & dead plants detection; and (c) estimation of the main

cropping indexes.

• Generally, these data, and not the images due to their large size, will

be stored in the cloud repository of the MW.

• Only in cases where a long-term image storage is needed, the IPP will

send specific images to the Image Data Manager in the MW for future

reference.

o Image Data Manager:

▪ Image processor: the image processor will provide image data for the specified

image or image set, the ground location, map projection and the image format

selected. This component will offer an OGC WMS interface, so the Farm

Management System will be able to retrieve images in the case the users need

them. The image processor will also be used to improve the image geometries.

▪ Image catalogue: the image catalogue will keep track of the image data location

(images could be stored in a file system or in Amazon S3 compliant systems),

the acquisition time, the geometric extent on the ground, the geometric models,

Page 93 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 etc. A typical query to the catalogue could be: e.g., “give me all Sentinel-2

images from July this year, covering this point”.

• Cyber security management:

o Management of the cyber-security technologies to be implemented in the Semantic

Middleware.

• MQTT Broker and MQTT Clients (Publisher & Subscriber) in the Middleware:

o Management of communication with the MQTT devices of the hardware deployed. The

QoS settings of the MQTT communications must be configured correctly according to

the AFarCloud requirements.

• REST Server and REST services for data acquisition and actuation on devices:

o Management of communication with devices of the hardware deployed offering a

REST interface.

• ISOBUS Gateway:

o Translation of missions for ground vehicles in the AFarCloud format, to an ISO-XML

file to be manually loaded by a GV (i.e., through a USB port).

o Translation of the log information of the execution of a mission by a GV, to the

AFarCloud data format.

• DDS Manager:

o Management of the DDS communications with the DDS compatible devices of the

hardware deployed. The QoS settings of the DDS Manager should be correctly

configured according to the AFarCloud requirements.

4.2.3. Deployed Hardware

This functional component will provide means to deploy and integrate the services and data provided

by the ground/aerial vehicles, sensors and actuators into the AFarCloud platform. Deployed Hardware

can be divided into four different categories:

1. Unmanned aerial vehicles (UAVs). The degree of autonomy will vary. Some UAVs will be fully

autonomous and will be controlled by the MMT through the planning algorithm, whereas a few

UAVs are deployed solely for specific sensors such as, hyperspectral imaging.

2. Semi-autonomous ground vehicles. There are two sub-categories (i) UGVs and (ii) tractors

incl. legacy systems. In the former sub-category there are two types of vehicles, domain

specific farming UGVs and general use UGVs. In the latter sub-category traditional farming

vehicles are found.

3. Actuators

Page 94 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 4. Sensors

The main functionalities identified up to now (M12) to be provided by this component are described

below:

4.2.3.1. Unmanned Aerial vehicles (UAVs)

Aerial vehicles will perform different actions in AFarCloud: (a) collect data gathered by their onboard

sensors during a mission execution and send it to the Middleware; (b) carry out special missions to

collect data from short-range sensors that lack of an internet connection and forward it to the

Middleware; (c) carry out other missions defined by the Farm Management System.

In AFarCloud, all communications between the Farm Management System and UAVs will use a DDS

link.

A. Functionalities and features of UAVs:

• Vehicle interface management: translation of the actions in an AFarCloud mission to the

specific language of the UAV. Translation of the data collected by the UAV (e.g., sensor data,

UAV status, UAV alarms, etc.) to the data format defined in AFarCloud (D2.6)

o Receiving missions and commands from the MW: The UAV’s DDS Proxy will be

subscribing to the topic mission. The DDS Proxy interprets the desired command and

translates the information into a UAV specific command or message, accordingly.

From this step, the message is treated as a normal command inside the UAV’s

framework. Besides, whenever a command/mission is received, the UAV will generate

an acknowledgement message that is reported to the MW by means of the

mission_report topic.

o Sending UAV status to the MW. During all its operation, the UAV will be sending,

periodically, messages concerning its state. The message sending to the MW is done

through the IDL topics pose (for vehicle location and orientation) and battery (to inform

the energy status of the overall system);

o Sending sensor measurements to the MW. Sensor measurements will be divided into

two sets: images and other measurements. The images taken by the onboard camera

will be reported to the MW using the topic image. The data obtained by other onboard

sensors will be reported in the topic observation.

• Alarms management: UAV error states detection and reporting. The UAV reports errors to the

MW both by the topic alarm and mission_report. In the alarm topic errors and alarms related

to the UAV’s hardware integrity and/or availability will be reported. In the mission_report, are

Page 95 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 reported errors with respect to the success (and failure) in the execution of a desired

command/mission.

• Management of the cyber-security of communications.

• Management of reliability of communications. In order to ensure that the UAV is

communicating, there are several alternatives. One possibility is to set a timeout in both the

UAV and DDS Manager. From the DDS Manager side, this timeout can be set regarding the

periodic messages i.e., the pose and battery topics. To use this alternative from the UAV side,

it would be necessary to implement an acknowledge message whenever a new pose is

received by the DDS manager (using, for example, the event topic). Another possibility is to

use the built-in discovery service of DDS to detect the presence of publishers and subscribers

(similar to a heartbeat message option).

• Software updates. The UAV functionalities might be affected with software updates. For this

reason, the system will not manage automatic software updates. UAVs should only allow this

kind of actions by a qualified person (to ensure the proper function of all the modules, a set of

tests must be run and validated prior to any further flight).

• User interface (Mobile MMT). It will allow the user to visualize relevant data from both UAV

fleets and single UAV information.

B. Interfaces of UAVs:

UAVs should implement a DDS Proxy in order to interface with the Semantic Middleware. The DDS

Proxy could be implemented in two ways depending on the type of the UAV. We have two types of

UAVs in AFarCloud: a) UAVs with open or accessible on-board software; and b) UAVs with proprietary

software (closed systems). Making changes in closed systems is usually complicated, or occasionally,

forbidden by the manufacturer. In addition, we should bear in mind that UAVs need accident insurance

to fly. The introduction of modifications in a product can lead not only to the loss of the guarantee

offered by the manufacturer, but also to the loss of the insurance policy. For this reason, we have

designed two alternatives to integrate an UAV in AFarCloud.

B.1. Interface with the Semantic Middleware for open vehicles: in this case it will be possible to

install the DDS Proxy onboard the UAV.

Page 96 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Figure 4: Interface with the Semantic Middleware for open vehicles

B.2. Interface with the Semantic Middleware for proprietary vehicles: in this case, the

recommendation will be to install the DDS Proxy of each vehicle in the Ground Control Station (or

mobile application) that manages the UAV.

Figure 5: Interface with the Semantic Middleware for proprietary vehicles

Page 97 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 The goal of the DDS Proxy in both of the proposed architectures is the following:

• DDS Proxy: it provides a DDS compatible communication channel to the UAV, offering a

bridge between the messages that the UAV is expecting (they could be based on ROS or any

standard solution used by the UAV) and DDS messages. On the one hand, the DDS Proxy

translates the DDS messages with generic commands issued by the DDS Manager of the

Middleware into vehicle specific commands. On the other hand, it collects data, events and

faults from the vehicle and translates these messages into AFarCloud DDS messages. DDS

messages will be based on the data format for UAVs defined in D2.6.

Apart from being the link with the Middleware, the DDS Proxy will also provide a DDS link with

the DDS Proxy of other UAVs (if a direct UAV to UAV communication is needed).

4.2.3.2. Semi-autonomous ground vehicles (GVs)

In AFarCloud, we consider under this category ground vehicles that are not equipped with an

autosteer system, (i.e., unable to perform autonomous navigation “go to waypoint” commands), but

capable of executing actions autonomously.

A. Functionalities and features of GVs:

• Vehicle interface: load ISO-XML files containing a mission for a GV on the CAN bus of the GV.

Unload log data from the GV’s CAN bus about the result of a mission execution. Translation

of the data collected by the GV (e.g., CAN data, GV status, etc.) to the data format defined in

AFarCloud (D2.6)

• Software updates management: allow operators/administrators to deploy secure firmware

updates to GVs.

• Alarms management: GV error states detection.

• On-board user interface: a display showing information and alerts from the AFarCloud system

to the operator.

• Management of the cyber-security of communications.

B. Interfaces of GVs:

• ISOBUS interface: communication at vehicle level between the GV and its implements.

• MQTT interface: to send data from sensors onboard the GV to the Middleware.

• USB interface: to load data (ISO-XML file obtained through the ISOBUS Gateway) into the

GV’s CAN bus manually. To unload mission log data from the GV’s CAN bus manually.

Page 98 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 4.2.3.3. Actuators

A. Functionalities and features of actuators:

• Actuator interface: translation of AFarCloud actions to the specific language of the actuator.

Translation of the data collected by the actuator (e.g., actuator status, actuator alarms, etc.)

to the data format defined in AFarCloud (D2.6)

• Software updates management: allow operators/administrators to deploy secure firmware

updates to actuators.

• Alarms management: actuator error states detection.

• Management of the cyber-security of communications

B. Interfaces of actuators:

• MQTT interface: communication with the MQTT Broker of the MW.

• CoAP interface: communication with the REST services of the MW.

C. Available actuators:

The tractor and its implements can be considered as a group of actuators such as auxiliary valves,

spraying nozzle, seeding rate etc. Their utilization as actuators is strongly dependant on the specific

set of tractors and implements that will be available on the demonstrator sites.

The main actuators to be developed within the project are shown in Table 1.

Table 1. Overview of actuators within the project

Actuator(s) Information Functionality

AIR NTP actuator -

sanitising device for air

Air treatment system for the

sanitisation of microbiological

contamination and chemical

substances of indoor air

Moulds and microbiological

contamination and filtering action for

improvement of indoor air quality

WATER NTP actuator -

treatment device for

water

Water treatment system for

production of treated water for

irrigation of green-house or

bounded area

Bio-stimulation of crop growth by

using treated water and sanitization

of contaminated surfaces

Electronic control unit

(ECU) as gateway

ECU gateway for monitoring the

data on CAN and ISOBUS network

It gives the possibility to receive

commands or data from the “cloud” or

from a WSN

Page 99 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

4.2.3.4. Sensors

In AFarCloud, we consider under this category groups of dedicated sensors (e.g., WSNs, collars) and

stand-alone sensors.

A. Functionalities and features of sensors:

• Sensor interface: translation of AFarCloud actions (e.g., change sampling rate) to the specific

language of the sensor. Translation of the data collected by the sensor (e.g., observations,

alarms, etc.) to the data format defined in AFarCloud (D2.6).

• Software updates management: allow operators/administrators to deploy secure firmware

updates to sensors.

• Alarms management: sensor error states detection.

• Management of the cyber-security of communications

B. Interfaces of sensors:

• REST interface: communication with the REST services of the MW.

• MQTT interface: communication with the MQTT Broker of the MW.

• CoAP interface: communication with the REST services of the MW.

C. Available Sensors

A summary of the available sensors within the project is shown in Table 2.

Table 2. Overview of sensors used within the project

Sensors type

Multispectral sensor, thermal camera (crops, soil information) – FIXED / Handheld

Multispectral sensor, thermal camera (crops, soil information) – MOBILE / UAV/ tractor

Soil (electrical detection - humidity, temp, conductivity) – FIXED

Soil (spectral detection, humidity, temp, conductivity) – MOBILE

Environmental: T, Humidity, CO2, CH4, TVOC, light intensity, dendrometer, leaf wetness, etc.

Vehicle data and its implements (e.g., GPS position, current speed/ torque/ fuel consumption)

Page 100 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Aggregated ruminal probe (temperature, pH, ORP, etc.)

Inertial sensors - Smart collar (cow)

The proposed sensors have different degree of development, some are commercial, some are already

developed by the partners, and some will be further developed during the project’s duration.

Depending on the utilized platform, there are sensors that will be mount on UAVs, sensors that will

be connected to UGVs, attached to livestock as collars, placed under ground as soil sensors, and in

green houses (other miscellaneous solutions will also be possible).

4.2.4. Other Data Sources

4.2.4.1. Third-party data

Third-party data will provide information for understanding the environment surrounding, the involved

ground/aerial vehicles and sensors. For the case of simple information (i.e., numerical data like a

temperature), the access to these data could be also done from the semantic middleware if needed.

For the case of complex information like maps, a Geographical Information System (GIS) should be

used for managing digital maps and available geographical data. The information of interest for the

project could be, among others:

• Weather forecast

• Meteorological data

• Classified digital Satellite data/Air images

• Soil maps/Soil strata

• Digital terrain model and Aspect (N-S-E-W)

• Surrounding vegetation

4.2.4.2. Legacy systems databases

The AFarCloud platform will have access to the data and provided by several legacy systems

databases:

• Nordic Cattle Data eXchange (CDX):

▪ Nordic CDX is a REST API that provides data of milking stations and robots taken from

the national cattle information systems of Finland, Sweden, Denmark and Norway.

Page 101 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 ▪ Within the AFarCloud project, the access to cattle database via Nordic CDX API is allowed

for Finnish implementation. Further, the access to the farm data is possible only for the

farms that have allowed the access to their data. The access is granted during the

existence of the AFarCloud project.

▪ The possible integration in the AFarCloud cloud repositories of data of interest for the

project will be studied.

• GIS database:

▪ This GIS system provides access to a GEO database with topography (2M grid) soil maps,

vegetation maps, hydrography and models to estimate soil wetness (in situ probes to give

ground data through measurements of soil parameters, nutrients, etc.)

▪ By using these data, farmers will be able to evaluate the spectral response from crops and

suggest proper counter measures in case of sign of bad crop.

• Herd management systems (AfiFarm and FarmSoft):

▪ These two systems offer information about data retrieved from herds of cows located in

Czech Republic.

▪ Access to these data will be provided and the possible integration in the AFarCloud cloud

repositories of data of interest for the project will be studied.

• Sensowave’s livestock management system:

▪ Offers information about the data taken by Sensowave’s ear tags and collars for cows.

These devices provide data about animal location and health condition (heat, calving,

temperature, etc.)

▪ These data will be integrated in the AFarCloud cloud repositories.

4.3. Cyber-security management

4.3.1. Motivation

Cyber-security is a very important issue in modern agriculture, according to system security and data

confidentiality. Today’s agriculture production plants are equipped with an uncountable number of

interconnected computers and modern electronics equipment. These components define the system

which must be considered in a cyber security risk assessment.

To perform a cyber security assessment, the location of the components of the architecture must first

be considered. Figure 2 displays the associated components of the AFarCloud architecture, which

shows:

(a) a set of components located outside on the field or in the stable:

Page 102 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 ➔ Deployed Hardware

(b) a set of components located inhouse:

➔ Hardware infrastructure for deployment (e.g., WiFi routers, computers, etc.)

➔ Edge components of the Semantic Middleware

➔ Farm Management System

(c) a set of components provided by third party companies. These components are out of the

area of influence for the asset owner.

➔ Third party data

➔ Legacy systems databases

(d) a set of components deployed in the Cloud:

➔ The Semantic Middleware, including the AFarCloud repositories (for the time being,

the Cloud repositories are being provided by the project partners).

On three of the mentioned component areas (a, b and d) the asset owner has fully control over the

security measures to be installed or used to harden the system against cyber security attacks. For

the last area (c) the asset owner can only perform a very accurate provider selection and must trust

that the defined security specifications are fulfilled. Security monitoring is the only activity the asset

owner can perform to increase the confidence.

The following three security aspects define the motivation of cyber-security attacks (with examples

for explanation). These aspects are in the focus of the cyber security management in AFarCloud:

Espionage

o Unauthorised Data access
o Data leakage
o Loss of know-how (IP) and production data
o Phishing
o Trojans
o IP Theft
o Spyware

Destruction and Exaction

o Causing physical damage to farming equipment
o Deterioration of product quality
o Ransomware
o Data manipulation
o Data destruction

Sabotage and Mis-usage

o Loss of availability of the farming equipment
o Loss of production

Page 103 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 o Deterioration of product quality
o Botnets
o Distributed denial of service (DDoS) attack
o Man-in-the-middle attack

To limit the possible cyber-attack risks in AFarCloud an exemplary cyber-security management

process must be installed to identify the system vulnerabilities with the possible attack vectors, and

to propose suitable countermeasures.

4.3.2. Security improvement

A first step to improve security is to reduce the number of data interchange ports to a minimal

necessary limit, using certified secure components and operating the internet activities with care.

A second step is to perform a cyber security threat analysis with a risk assessment to identify for the

entire system the actual and the necessary security level.

Table 4 lists general security requirements, which define measures to improve the overall system

security.

Tool support

For a large system the security management process, according to the concept of a dedicated security

standard is a very complex task. This is due to the fact that a lot of steps and analysis, documentation

and requirements preparation must be performed very accurately. These steps are mandatory for

each system area, each system conduit and components, depending on the requested security level.

In the course of the project, a security process management tool (CSFlow) - provided by AIT - will be

used. This tool will be enhanced for security in agriculture. CSFlow guides the system design experts

through all necessary design phases to perform all specified security steps, according to a dedicated

security standard. For more details about security standard (Section 4.3.3).

A process management tool, as like the CSFlow™ tool represents a big support to manage the

prescribed design steps and the implementation of the security requirements in a precise and

traceable way.

The development of CSFlow and the detailed description of the cyber security management

contribution will be performed in WP6 and in WP7 in a real security application for a demonstrator use

case.

The cyber security process tasks must be coordinated with the asset owner, who must agree and

support the mandatory steps to harden the system according to the state of the art.

Page 104 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 It is very important that the system to be assessed, is described completely with a sufficient level of

detail and correctly defined system borders. Defining the system in a not adequate way implies the

hazard that important system security issues can be overseen, whereas a too large system definition

may lead to unnecessary security risk analysis efforts which usually do not help to improve the security

of the system.

The cyber security management process consists of the four main cycles:

• Security assessment and analysis

• Security measure installation

• Security guidance and

• Security verification

4.3.3. Safety / Security standard landscape

The overview of well-known safety and security standards shows that they come from the industrial

and mobility (vehicles, train, avionic) domain. The focus of agriculture standards is in safety

regulations, to prevent illnesses and injuries from agriculture work by using pesticides, save use of

heavy machines and animal-friendly treatment of animals (livestock). Agriculture security standards

mainly handle the area of food and nutrition security while for the agriculture IT / OT security no

dedicated standards are defined at the moment. But in this case, today’s well-established industrial

control security standards are a perfect and good suitable source for applications.

The overview lists some cyber security standards from the IT / OT domain:

ISO/IEC 15408 establishes the general concepts and principles of IT security evaluation.

ISO/IEC 27000 provides the overview of Information Security Management Systems

ISO/IEC 27001 formally specifies a management system for information security

ISO/IEC 27002 describes guidelines for organizational information security and information

security management practices.

ISO/IEC 27005 brings guidelines for information security risk management.

ISO/IEC 62443 Industrial Communication Networks - Network and System Security series

For the cyber security management process in AFarCloud, the ISO/IEC 62443 security standard will

be the base for all ongoing system assessments and cyber-security measure implementations.

The core goal in ISO/IEC 62443 standard is to define Foundational Requirements (FRs) and Security

Levels (SLs).

Page 105 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 The SL defines the necessary protection level again potential attacks, such as shown in Table 3:

Table 3. Cyber security level definitions

SL 0 No specific requirements or security protection necessary

SL 1 Protection against casual or coincidental violation

SL 2
Protection against intentional violation using simple means with low resources, generic
skills, and low motivation

SL 3
Protection against intentional violation using sophisticated means with moderate
resources, IACS specific skills, and moderate motivation

SL 4
Protection against intentional violation using sophisticated means with extended
resources, IT specific skills, and high motivation

The FR’s defines the necessary measures to fulfil the requirements for the SL , in seven subgroups,

Table 4.

Table 4. Foundational requirements overview

FR1 – IAC
Identification and Authentication Control

o Password and user authentication

FR2 – UC

Use Control

o Mapping of roles in the management process
o System usage policy

FR3 – SI
System Integrity

o Session handling, cryptography and monitoring to detect changes

FR4 – DC

Data Confidentiality

o Encryption
o End to end data encryption

FR5 – RDF

Restricted Data Flow

o Less connection
o Network segmentation

FR6 – TRE

Timely Response to Events

o Event / Action Logging
o Monitoring
o Anomaly / Inconstancy detection

FR7 – RA

Resource Availability

o System backup
o System recovery

Page 106 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 4.3.4. MQTT security

MQTT is a good opportunity to bring security in the IoT based control system, where secure data

exchange and an end-to-end isolation between the data source and data sink is a main security topic

for the system design concept.

Data exchange with MQTT can be protected by several well-applied security measures on the

different network layers.

Network Layer: E.g. using of a secure network or VPN.

Transport Layer: Data encryption according the SSL (Secure Sockets Layer), or the new labelled TSL

(Transport Layer Security) protocol specification.

Application Layer: Using data encryption and device authentication. MQTT support the

authentication of devices with a client identifier and username/password credentials.

The applied security measures depend on the available computing resources in the MQTT clients,

because the big plus of MQTT is the lightweight software footprint, which allows MQTT for small

microcontroller applications, too.

4.4. Wireless Sensor Networks

The wireless sensor networks (WSN) is one of the key building blocks for fulfilling the AFarCloud

objectives by allowing the extraction of the data that is collected by the sensors and making it possible

that the data can be forwarded to the AFarCloud services.

An open field, a closed barn or a limited area have different requirements for the technology type of

wireless that, in the sensor networks, can be used. While in closed/limited areas, the sensor networks

have to deal with distances around tens of meters for wireless communication, ranges of hundreds of

meters to kilometres are possibly required on open fields such as corn fields or olive fields, for

example.

Wireless communications range depends on the type of technology used and can be divided in short

range radios and long-range radios (see Figure 6).

With short range radios, to cover an area greater than a single radio can, wireless solutions can be

built based on mesh networks and associated protocols to solve the radio signal range issue. For

increased coverage, where it is not feasible to create a short-range radio mesh network, long range

radios such as the ones built for LPWANs (Low Power Wide Area Networks) allow a solution for

covering such extended areas.

Page 107 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Figure 6: Short range radio mesh network (on the left), LPWAN long range radio (on the right)

Still, LPWANs increased range come with lower data rate throughput and higher latency as a cost of

the increased range, thus is not ideal for continuous monitoring. For such purposes, the lower range

devices offer higher throughput and lower latency but also have higher energy consumption.

As such important factors like the necessity for real time monitoring, data throughput, latency, range,

energy consumption and quality of service, among other parameters, are the key aspects to consider

on implementing a wireless sensor network for the AFarCloud project.

Other important factors for the sensor network, not related with the technical aspect of how data is

transmitted, are the CAPEX (Capital Expenditure) and OPEX (Operational expenditure) of such

networks. Direct costs such as the radio and gateway hardware and operational costs such mobile

operator costs, battery maintenance need to be considered for a WSN solution.

4.4.1. AFarCloud Sensor networks

Annex 1. WSN Technologies contains a detailed description on WSN Technologies, an explanation

about their pros and cons, and their possible usage for AFarCloud.

Specifically, for the scope of AFarCloud wireless sensor networks and based on Annex 1 description

of available wireless supporting protocols, the following protocols are recommended:

Short-range networks:

6LoWPAN over 802.15.4 radios → Allows the creation of wireless sensor networks with constrained

devices that can integrate seamlessly with IP networks. 6LoWPAN is an open protocol, has both the

hardware for nodes and gateways available, and the protocol stack is available for several types of

architectures (ARM, Atmel, Linux). Integration with higher level data transport protocols such as

Page 108 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 MQTT, MQTT-SN and CoAP can also be done at the sensor level, without the need of a specialized

protocol gateway.

WIFI → The standard for low range high speed networks, ideal for devices that are not power

constrained.

Bluetooth → Bluetooth allows connectivity at the personal level and also supports 6LoWAN as a

communication protocol. It is ideal as the communication protocol for supporting body sensors in body

area networks, for example devices to monitor cattle body temperature and motion.

Bluetooth can also be used for presence detection, for example an animal wearing a collar that just

advertises its Bluetooth ID, if non-mobile gateway on an area detects that advertisement, it can infer

the animal presence in that area.

Long-range networks:

Without incurring in operator costs and radio coverage, the only viable solution for a LPWAN network

is the implementation of a LoRa based network. Still, the initial CAPEX can be high due to the

necessity of adding multiple LoRa Gateways for high availability purposes.

The CAPEX costs for a LoRa network can be levelled by the use of the LoRaWan standard that

implements a network layer with a set of services that can be private or public over the LoRa radio

protocol. LoRaWan can build networks that can be shared among farms and other users of the

LoRaWan network and so use gateways that were deployed by other entities. An example of such

open network is the TheThingsNetwork. In this case, users can use the available LoRaWan gateways

or deploy their own, so they also take part of the network and in return, any gateway can relay sensor

node information to end application/servers, in this case the AFarCloud servers.

4.4.2. Store and Forward networks

These networks are remotely located and are out of range of any connectivity to the AFarCloud

servers either by LPWAN or other means of wireless connectivity. It can also be assumed that power

on these networks is a scarce resource, which means that nodes are battery powered and may have

solar power or other energy harvesting methods to keep batteries topped up. To save power most

nodes are in sleep state, only waking up to gather the required sensing data.

The nodes sensing data can be stored temporarily in each node and collected, in a future time, by a

fly by UAV or approaching vehicle. In this case the collecting vehicle must approach and be in range

of each sensor to allow the data download and triggering the data download process. This process

depends on the state of the node, if dormant or not and can consume a lot of the node energy.

Page 109 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Another approach is to let the network behave as a standard network with nodes and a gateway,

where the gateway has a higher capacity power source backed up with solar or wind generator, thus

it is always awake and ready to receive data. The gateway also has capacity for storage of all received

data from all nodes, which means that the collecting vehicles only needs to visit the collecting

gateways.

For such networks, LPWAN LoRa based network with a LoRa gateway and associated hardware for

high speed data link to upload data to the collecting vehicle is an ideal solution. LoRa gateways can

receive data from nodes that are kilometres away, and gateway hardware and software can be

modified to support the store and forward network topology.

The software for this specialized gateway needs to be modified from the standard LoRa gateway

software, so it packs the data into data units with an associated GUID (Global Unique Identifier), that

is uploaded to the collecting vehicle. In a future pass for gathering more data, the collecting vehicle

informs the gateway of the AFarCloud data units that were previously collected and successfully

transferred, and so the gateway can delete the associated data unit safely.

Page 110 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

5. The Farm Management System

5.1. The Mission Management Tool

5.1.1. Description

The goal of the Mission Management Tool (MMT) is to provide the operators with a central user

interface, and a set of services accessed through this interface. These services aim at: (i) defining,

(ii) planning, (iii) monitoring, (iv) controlling, (v) analysing, and finally (vi) saving mission-related data

(incl. sensor data, status of all connected hardware such as sensors, actuators, robots/vehicles where

applicable) in (i) – (v) of a mission. The stages of monitoring and control are performed during the

mission and also include sensors as part of any system, and also systems that are not subject to

programming. This means that all values relevant for the mission will be accessible to the operator.

Some of these services are provided by various software solutions within the MMT itself whereas

others are part of the FMS (i.e., the DSS and the System Configuration solutions), and other

components that the MMT accesses through the MW. Thus, the MMT acts as a command and control

centre for planning and supervising the missions performed by the vehicles i.e., UAVs, UGVs, and if

applicable legacy systems.

It is assumed that the MMT is found in an office environment. Whereas the MMT will provide full

functionality, the mobile MMT, accessed through an approx. +10-inch tablet, has the purpose of

providing selected set of services when mobility near the mission site is required. In this context three

different configuration of the mobile MMT are assumed:

1. Operator view: the generic mobile solution.

2. Tractor driver view: dedicated solution for placed in a tractor cockpit, and to be used together

with other monitors.

3. UAV pilot view: dedicated solution for UAV pilots to be used together with the GUI of the base

station.

Services for these three views are related to monitoring of the mission, and analysis of the data

including access to the DSS. This means that planning, and control of a mission will not be possible

to do through the mobile MMT (except solutions for termination of a mission due to safety and security

risks). A detailed list of the services/capabilities of these both MMT and operator mobile MMT,

including the differences, are as follows:

Page 111 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 1. Providing the operator with maps from different sources containing different (and/or

equivalent) type of information of an area. The area here can be any location, although it refers

to the location of a mission;

2. Providing the operator with list of assets of the vehicles such as, their status and properties

including their equipment such as sensors and actuators. This service is provided together

with the System Configuration solutions;

3. Providing the operator with relevant information obtained from Decision Support System

(DSS). This input can be shown as an overlay of the map or using appropriate modality;

4. Providing the operator with weather data and other external relevant information;

5. Allowing the operator to define “forbidden” zones which should be avoided by the vehicles

(N/A to mobile MMT);

6. Allowing the operator to define mission goals that will be used by the planners for solving the

problem (N/A to mobile MMT);

7. Communication with the planners to plan the actions of the vehicles in order to solve the

mission (N/A to mobile MMT), sending the plan to the vehicles through the Middleware (N/A

to mobile MMT);

8. If required, allowing the operator to modify the planned mission (N/A to mobile MMT);

9. Communication with the MW to receive status updates from vehicles;

10. Communicates with other Ground Control Stations (GCS) to inform them of the flight plan and

mission objectives (N/A to mobile MMT). This is done through the Middleware;

11. During a mission, providing the operator with messages and alerts received from the vehicles;

12. Allowing the operator to abort or re-plan a mission and execute it (the mobile MMT will have

a sub-set of functionalities).

Figure 7 shows an overview of the MMT and its connections with the Robotics Agents through the

Middleware. In the figure one robotic agent with its three main components are shown. Such an agent

is a (semi-)autonomous robot i.e., UAVs, UGVs, and if applicable, legacy systems, as well as non-

moving equipment (which can be subject to hierarchical planning).

Page 112 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Figure 7: Overview of the MMT and its connections with the Robotics Agents through the MW.

5.1.1.1. The Graphical User Interface

As mentioned above the MMT provides the operators with a Graphical User Interface (GUI) for

services 1-12 above. Since different categories of users will use the MMT, it is important to adapt the

GUI to meet these requirements. Working with the plans of the missions will require a moderate to

large screen size (15 inch or preferably above), whereas monitoring a mission, or visualization of the

data on/near the field will be done with a tablet.

The MMT’s GUI will provide the operator with a geographic map showing the mission area and

different objects such as vehicles and sensors. Through this GUI, during a mission, it will be possible

to visualize measured data, trajectories of the vehicles, as well as other relevant data such as UAVs

battery time/consumption or other critical parameters).

Page 113 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 The maps will be accessed through OGC Web Map Service (WMS) providers, including AFarCloud’s

Image Data Manager (IDM). This allows for integration of different maps from different sources, e.g.,

satellite maps, precipitation, weather maps, etc. Different maps can be presented as different layers

providing additional information that the operator might need. MMT map presentations should be

expandable using a plugin-based design. This will allow for easy integration of other map services

including weather maps, satellite maps, etc.

An important feature of the MMT will be the advanced customizable visualizations that will provide

insights into the current and historical data, and thus will allow building high-level data awareness.

These services i.e., Visualization tools for High-Level Awareness Framework (HLAF), will complement

the MMT and the DSS to create a complete solution of tools for creating more accurate and useful

mission plans. The HLAF services will go from simple view of historical values in a line-chart (with

ability to arbitrarily zoom in and out) to comparing data from different sources (and potentially a

different scale) and data from different time periods. Furthermore, this will allow also observing trends

in the data. Connected with design of data processing pipelines for particular demonstrators, it may

also allow for what-if analysis, that based on historical data, shows the potential impact of particular

value settings. This will be especially important in order to fine-tune parameters of algorithms used

for autonomous decisions. These features are meant to be used on medium to large screens (15 inch

or preferably above). As the real-time data insights require relatively significant computation power,

the data will be processed in the cloud and the visualizations will be served via web-based services.

5.1.1.2. Mission Planning and Planning Algorithms

Planning a mission requires access to different set of resources. This includes maps, vehicles and

their capabilities. In addition, a set domain specific tasks must be defined. Obviously, the vehicles

must have sensors, actuators, and other SW/HW (all related to vehicle’s capabilities) so that at least

one vehicle is able to perform a specific task, in case this task becomes part of a mission plan. The

operator will be able to choose a set of desirable tasks and the MMT will communicate with mission

planners to generate a list of possible plans. The operator will be presented with an option to choose

one of the given plans and save it for a future use or execute the plan immediately. When the plan is

selected for execution, it is being forwarded to the MW’s Mission Manager Component. In addition,

the communication between MMT and MW is used to retrieve mission progress data and present it to

the operator.

5.1.1.2.1. Hierarchical planning

Planning missions for multi-agent systems is a complex problem as there are several factors that

affect planning. Thus, there are many possible ways to plan a mission since there is a need to use

Page 114 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 algorithms that can optimize a plan based on a given criteria. Due to the complexity of the problem

and many unknown factors, the strategy here is to have several planners implemented, with vast

range of capabilities, based on different paradigms to “compete” for the most appropriate plan for the

given problem/mission and circumstances. The most basic separation between planner alternatives

is to optimal and sub-optimal planners. Optimal planners produce optimal plans, however they are

usually very slow (due to the problem complexity being NP-hard at least). Sub-optimal planners are

more suitable for situations where the necessity for a feasible plan outweighs the need for optimality,

e.g., UAV autonomy is not very long (~ 15 mins), so if there is a need to re-plan, the planning process

needs to be fast, i.e., the UAVs cannot wait hours for a new plan to be produced.

In the addition to aforementioned categories, planning process can be divided into levels, or a

hierarchy, as follows:

• High-Level Planning (HLP)

• Mid-Level Planning (MLP)

• Low-Level Planning (LLP)

HLP represents the most abstract level of planning. It consists in providing the schedule and

breakdown of tasks that need to be performed by the multi-agent system in order to accomplish the

mission. The output of a planning process is a plan, i.e., a list of ordered tasks allocated to vehicles.

At this level, tasks are assumed to be atomic and can require different equipment for its completion.

Task duration and energy consumption are roughly estimated. Transits between tasks are roughly

estimated as well, usually using Euclidian heuristics. Obstacles and environment influence are

ignored at this stage of the planning process. The set of high-level tasks that HL planners receive is

as follows (note that solely UAVs are assumed, a more generic solution with GVs and other resources

will be designed after M13):

• ACTIVE_TRACK: the UAV will track a moving subject using the vision system and without a

GPS tracker on the subject. The subject to track is defined by a rectangle on the live video

view.

• FOLLOW_TARGET: the UAV will follow GPS coordinates continually sent to the UAV

maintaining separation and a constant altitude.

• HOTPOINT: the UAV will repeatedly fly circles of a constant radius around a specified point

called a Hot Point.

• INSPECT: go to a given location and take photos or record video.

• PANORAMA: go to a given location and take photos while rotating the camera 180 or 360

degrees.

• SURVEY: Boustrophedon coverage of an area is the default method for surveying a 2D space

(alternative methods to boustrophedon are plausible, including dynamic/adaptive methods).

• TRANSIT: go towards a given location.

Page 115 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 The planner used for HLP is based on a simple Genetic Algorithm (GA) and has been adapted to

the specific problem of multi-agent mission planning.

MLP is the intermediate level of the hierarchical planner. It exploits the high-level plan to compute

waypoint sequences based on an optimization approach according to some predetermined criteria,

which UAVs shall follow in order to achieve the desired goal. The output is provided to the LLP module

as a set of waypoints (a waypoint sequence for each device). MLP takes as input HL tasks described

in the paragraph above and breaks them down. Each task is split into the corresponding set of

commands (to be defined in detail for each task). Depending on the constraints and the objective

function, different optimization problems can be formulated in order to compute the MLP output. For

example, a cost function can include the time execution, the energy consumption and the number of

available quadcopters, while, a maximum amount of time, energy and number of quadcopters

available for the task execution can be considered as constraints.

MLP takes HLP output as an input and “refines” the plan by calculating trajectories and breaking down

tasks into commands. MLP can be seen in most cases as path planning and task planning process.

Path planning includes calculating the path between tasks, however, in this context considered,

various information that were intentionally ignored at HLP level (obstacles and other information from

the environment) are considered at MLP level. Task planning is the process of planning the execution

of the task. At this level, tasks are not seen as atomic entities. For example, if a UAV should survey

an area taking photos, task planning deals with solving the way that UAV will cover the surveyed area

and how the equipment should be activated.

For each of the aforementioned high-level tasks the MLP will compute a list of waypoints and specific

commands/signals that will be also provided to the LLP in order to correctly execute the mission.

Particularly:

• ACTIVE_TRACK: the MLP will compute the waypoints to reach the intendent position where

the moving subject is located. Then, the waypoints are fed into the LLP along with the

ACTIVE_TRACK command to signal that when reaching the target location (last waypoint

within the list) the UAV shall detect and track a moving subject by only using the onboard

vision system and algorithms.

• FOLLOW_TARGET: the MLP will continuously get new coordinates position from the HLP

and will re-plan the waypoints accordingly (a maximum/minimum rate which depend on

several aspects that will be discussed later). Then, each plan will be dynamically fed to the

LLP.

• HOTPOINT: comments the MLP will compute the waypoints to get to a location where it can

start flying circles around the target location. Then, the resulting plan will be fed into the LLP.

Page 116 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 • INSPECT: the MLP will compute the waypoints to get to the given location. Then, the

waypoints are fed into the LLP along with the INSPECT command to signal that once the UAV

has reached the last waypoint it shall take photos or record videos.

• PANORAMA: the MLP will compute the waypoints to get to the given location. Then, the

waypoints are fed into the LLP along with the PANORAMA command to signal that once the

UAV has reached the last waypoint it shall take photos while rotating the camera 180 or 360

degrees.

• SURVEY: the MLP will compute the waypoints to achieve the Boustrophedon coverage of an

area which boundaries have been obtained by the HLP through corresponding GPS

coordinates. Then, the resulting plan, i.e., the waypoints to get to the boundary of the given

area along with the waypoints related to its coverage, will be fed into the LLP.

• TRANSIT: the MLP will compute the waypoints to get to the given location and will feed them

into the LLP.

LLP deals with the motion planning, i.e., how to follow the path (actuator control) that has been

generated by the MLP, or other low-level instances within task planning like turning sensors on and

off. LLP is out of the scope of T3.2 and usually is addressed within vehicle specific module.

5.1.1.3. Supervision of Missions and Systems

An important part of the MMT is supervision of missions and vehicles. Therefore, it is essential that

MMT provides the operator with relevant warnings when an alarm happens e.g., a vehicle/sensor

malfunctions, a vehicle has very low battery level for the remaining part of the mission, or two vehicles

are too close to each other (or a building). These alarms will be set through the “System Configuration”

component of Farm Management System and accessed by the MMT.

During a mission, the operator will be able to view the mission progress by observing the locations of

the vehicles and their current state or see the camera live feed from the vehicles, when possible. They

will also be able to see deviations from proposed plan and request a re-plan if necessary. In order to

allow the operator to review the missions later, mission plan and mission progress will be saved

though the MMT for future reuse and analysis.

5.1.2. Software Interfaces

MMT will provide interfaces for development of tools and external components that need to be

integrated with MMT and its GUI (see Figure 8). These interfaces allow the AFarCloud partners to

develop plugins for MMT that can easily be added to it and provide new functionalities and user

interfaces. In cases where plugin interface cannot be used, Apache Thrift will preferably be employed.

Page 117 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 5.1.2.1. Interfaces for Farm Management System

The DDS, the System Configuration are other parts of the Farm Management System that require to

be accessible through MMT’s GUI will be developed as plugins for MMT to allow for extensibility and

code separation. This means that they will need to be developed with the same technologies as MMT

or contain a proxy developed in MMT’s platform that communicates with the tools.

5.1.2.2. Interfaces for visualization tools for high-level data

awareness

In order to support the operator during the process of planning, performing and evaluating a mission

(the main MMT functionalities), services for data analysis in general (with/without the DSS) will be

provided also, in order to grant high-level data awareness (HLAF). These services will be integrated

either with the MMT or the DSS depending on the purpose. The objective of these services is to bring

high-level data awareness and insights (developed in T6.3). This framework will be hosted in the cloud

and will offer a web-based interface for development and configuration of the visualizations and for

development and configuration of data processing pipelines. This will allow to use the tool remotely

while the heavy (offline and real-time) data processing will happen in the cloud. The tool will be

integrated into MMT via web-components (and potentially an IFRAME). This integration will further

require sharing of authentication/authorization tokens from MMT.

5.1.2.3. Map Providers

Interfacing with different map providers will follow the plugin design as well. Each map provider will

have a plugin developed for the MMT that acts as a proxy to communicate with different map providers

using WMS protocols and presents the final image on MMT’s GUI.

5.1.2.4. Other Data Sources

Any other data source can also be accessible and be presented in the GUI to the operator following

the same plugin design. Communication with a data source can be based for example on REST

protocols and be presented to a proxy plugin, which in turn presents the results on the MMT’s GUI.

5.1.2.5. Middleware

Communication with different parts of Middleware will be based on Apache Thrift. This includes the

Device Manager, the Mission Manager, the Data Query and the Device Registry.

Page 118 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Figure 8: Interfaces of the Mission Management Tool

5.2. Decision Support System

5.2.1. Description

The goal of the DSS is to provide expert recommendations using algorithms that extract conclusions

from data. DSS complies with criteria of scalability and adaptability, as users’ requirements are

different in each scenario (see Figure 9).

Algorithms are the core of the DSS as they provide outputs. Algorithms can be classified in two

classes, according to the outputs they provide:

• Calculation of complex metrics for crop and animal welfare from raw data. Note that

these complex metrics are useful only if they are solving the right problem and in a way that

is understood by the users. For example, the metrics for calculating “percentage of water

stress in a crop”: (i) soil humidity in several points, (ii) solar radiation, (iii) amount of watering,

(iv) raining, (v) type of soil, etc.

• Recommendation algorithms. This stage represents the next step after calculating the

output as above. The recommendation algorithms’ goal is to integrate metrics (computed by

algorithms) and suggest different alternatives, or solutions to the user, in order to help him/her

reach an objective (defined in users’ requirements). An example recommendation could be:

Page 119 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 “when the crops are watered consider the following: (i) levels of water stress forecasting next

days, (ii) low levels of disease risk, (iii) expected amount of watering”.

There shall be algorithms to monitor data or metrics to alert users of low or high levels that can

jeopardize defined objectives.

Data for algorithms will be in the AFarCloud repository. The DSS will not store any data, although

algorithms could use local repositories for their calculations.

5.2.2. Interfaces

A. Interface for Farmer and Farm Cloud (DSS)

This interface is for configuration purposes. It is used for starting/stopping the execution. The farm

operators can perform the following actions:

1. List the installed algorithms;

2. Start an algorithm. The user must define a name for the algorithm and a configuration. The

configuration will be a global configuration, i.e., a high-level configuration: sensor position,

model to apply, etc. Thus, it does not refer to internal parameters of the algorithm itself. The

DSS registers the name and sends the Entry Point a “start command”. Internally, the Entry

Point knows that the algorithm is started and returns a unique identifier. The algorithms must

have the ability to be instantiated several times (each time with a unique identifier or

algorithm_id), since the same algorithm is used in several farms with different configurations

and data.

3. Stop an algorithm (stop receiving alerts and recommendations). The DSS will connect to the

Entry Point and it will stop the algorithm (algorithm_id).

4. The user can ask the DSS for the list of running algorithms and their id.

5. Others (e.g., configure alerts).

The algorithms will be able to communicate with the DSS to inform about their status, and in case

there are errors during the execution.

B. Interface for Farm Cloud (DSS) and algorithms

This interface connects the DSS with the algorithms in partner’s premises. Thus, all partners that

develop algorithms for DSS need to implement an API to listen commands or send their status. This

interface will process internally to stop, start and configure the algorithms according to the farm’s

operator specifications.

Page 120 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 The DSS cannot manage the internals of the algorithms that partners develop, therefore the DSS

needs a way to control them with basic commands. The proposed basic commands are:

­ Start a recommendation algorithm, sending the name of the algorithm and the configuration

file (if needed). Returning an internal id.

­ Stop a recommendation algorithm (by means of its internal id).

­ Send the status of the algorithm to the DSS (by request or periodically).

Therefore, all partners will need an interface to communicate their algorithms with the DSS. For that

purpose, it is proposed an API service that will be addressed by the DSS whenever a command needs

to be sent. For sending the status of the algorithms, another API interface will be implemented in the

DSS.

C. Interface Algorithms and the Middleware

All the algorithms will need to access to the database to collect data in order to generate their outputs,

to store them in the database and to send alerts via the publish/subscribe mechanism. These

interfaces are not implemented by the DSS.

Figure 9: The AFarCloud DSS architecture and interfaces

Page 121 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 5.2.3. Components

The basic components of the DSS are as follows:

− Algorithm Manager: This component is in charge of managing the algorithms that will be

deployed as part of the AFarCloud platform in the farm. The user can interact with it to define

and configure the algorithms available in the farm and to stop or start an algorithm. The

Algorithm Manager will store internally which algorithms are available in each farm and the

status of them (running or stopped) and the URL and port where the algorithm is accessible

through APIs.

− Algorithm Toolbox: With this approach the algorithm could run either in the partner’s

premises or in the cloud. The algorithms will have access to the AFarCloud repositories to

collect the data needed to operate. The results will be saved in the AFarCloud database (for

visualization purposes or for further analysis), and optionally, they can generate alerts via a

publish/subscribe based mechanism (to be implemented in the Middleware). This mechanism

will publish relevant alerts, warnings or errors to interested subscribers (users or other

components).

5.3. System Configuration

This module handles the configuration and settings of system hardware (vehicles, farming machinery,

sensors, actuators, etc.). To this end the following high-level architecture of the platform configuration

module is foreseen as shown in Figure 10:

Page 122 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Figure 10: Interfaces of the System Configuration

• The Data Exchanger module will implement the interface to the MMT and respective User

Interfaces to support the following:

o Configuration of sensors and actuators (e.g., sampling rates and other operational
parameters);

o Alarms configuration;

o Notification of available firmware updates for sensors, actuators and GVs;

• The Configuration Compiler module will make any necessary format adaptations in order to
translate configuration information received from the MMT/UI to be transmitted towards the
underlying AFarCloud platform infrastructure.

• The Configuration Module will implement the interfaces to the underlying AFarCloud platform
infrastructure via the Middleware Device Registry and Device Manager in order to transmit
configuration information.

The platform configuration module will not be developed for the first-year demonstration and updated

specifications of this module will be provided in the final version of this deliverable.

Page 123 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

6. The Semantic Middleware

Figure 11 depicts the components and interfaces of the semantic middleware. Most of the elements

of the Semantic Middleware are deployed in the Cloud, except for four components (i.e., the Image

Processing Platform, the DDS Manager, the Data Pre-Processor and the Data Fusion), which are

deployed at the Edge. Edge components must be implemented on the site, in the farm facilities.

Figure 11: Components of the semantic Middleware

Page 124 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 The Semantic Middleware provides the following interfaces to the rest of the elements of the

AFarCloud architecture:

• Interface with the Farm Management System:

o Apache Thrift interface: query cloud repositories, sending missions, collecting mission

results, sensor status and alarms.

o Web Map Service interface: retrieving images from cloud repositories.

o Apache Kafka interface: delivering real time data streams to the DSS.

o REST interfaces: collecting data from other data sources (e.g., third-party data).

o USB interface: load/unload of ISO-XML files.

• Interface with Deployed Hardware:

o DDS interface: sending actions to UAVs, collection of action results, sensor status and

alarms from UAVs. Communications with DDS compatible devices (i.e., UAVs) are

managed in real-time.

o ISOBUS interface: sending actions to ISOBUS compatible vehicles (i.e., GVs).

Collecting the results of actions carried out by GVs.

o MQTT interface: managing communications with MQTT devices (e.g., sensors

onboard GVs, standalone sensors, groups of dedicated sensors, actuators).

Communications with MQTT devices are managed in real-time.

o REST interface: managing communications with devices offering a REST interface.

o USB interface: load of hyperspectral/multispectral images taken by UAVs in the Image

Processing Platform.

• Interface with legacy systems databases:

o REST interfaces: collecting data from other data sources.

The following sections of this chapter describe each of the components of the Semantic Middleware.

6.1. Cloud Data Storage

6.1.1. Description

The data managed in AFarCloud will be stored in 3 types of repositories: semantic, relational and

NoSQL. Depending on the needs of the information to be stored, the appropriate repository will be

chosen.

The major benefits of semantic repositories, in comparison to relational databases, are: the data

schema can be changed without affecting the data instances; implicit knowledge can be automatically

Page 125 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 inferred without having to explicitly store it based on either semantic rules or the logic of ontological

languages; seamless integration of distributed data sets and linked data models. This provides greater

flexibility and scalability to AFarCloud data model and the possibility of inferring events based on rules

like the detection of possible collisions between vehicles based on their Euclidean distance. For this

reason, the semantic repositories will be used to store the last updated information or “photo” of the

farm.

Relational databases will be used to store historical information about the farm and the missions. This

kind of repositories allow multiple users to access the database simultaneously and offer built-in

locking and transactions management functionality which ensures security and reliability and prevents

collisions.

Finally, NoSQL repositories (like MongoDB, HBase or InfluxDB) will be used for storing observations

from IoT devices and sensors. It is expected that this volume of data can be large and grow in the

future and measurements coming from different sensors are not related between them so there is not

the need of structured data.

The data model for all these repositories will be described in deliverable D2.6.

6.2. Cloud Resources Monitoring

6.2.1. Description

The aim of this component is to ensure that the cloud resources where AFarCloud is deployed on are

behaving in accordance to the expected non-functional requirements (NFR). For the time being the

non-functional requirements that will be covered by this component are availability, workload job

processing performance, overall performance, and response time (see section 2.9 Cloud resources

monitoring requirements).

More specifically, the objective of this component is to monitor the cloud resources, namely virtual

machines, database as a service and storage as a service. In addition, compare their actual values

with the Service Level Objectives (SLOs) identified by the developer in order to alert said developer

when a violation has occurred. It also has the aim of analysing the workload that a data processing

job is taking in order to be able to optimize the execution of such processing jobs or to select additional

cloud resources for a better performance or improved response time.

Page 126 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 6.2.2. Components

The cloud resource monitoring component is envisioned to have the following components (for more

detail, please see D4.3):

• NFRMonitoring manager: this component is the core of the cloud resource monitoring

AFarCloud component. Once the developer manifests the need to start monitoring a cloud

resource, it configures and starts the different agents needed for the NFRMonitoring metering

to function properly as well as the monitoring registry.

• NFRMonitoring metering: This component collects the data from the different cloud services

where the AFarCloud components are deployed in. The needed data are inserted through the

UI component or through a REST API.

• WorkloadMonitoring: this component will evaluate how the processing job is behaving in terms

of workload in the contracted cloud resource.

• NFRMonitoring registry: This sub-component is in charge of storing the data collected from

the metering sub-component in a time-series database.

• SLO Assessment: responsible of the aggregation, if needed, of the raw monitored metrics

whose values need to be assessed with respect to the predetermined SLOs, and comparison

of the theoretical values vs. the real values.

• ViolationManager: Once the SLO Assessment component detects a violation of the SLO, this

subcomponent registers the violation in the service registry data base and alerts the developer

e.g., via an email that a violation has occurred.

• UI: This is the user interface where the developer will insert the data related to the IP of the

cloud service contracted, the thresholds of the values to be monitored, and so on. This

information may also be sent to the cloud resource monitoring through a REST API. This

component will also include the dashboard where the actual values of the monitored metrics

will be shown at real time, as well as a summary of the violations occurred by cloud service

offering.

• CloudServiceRegistry: this is the database where the service catalogue is stored, and where

the occurred violations are stored. While the violations could be queried from the

NFRMonitoring registry, initially it is envisioned to store the violations on a different database,

namely this one, for performance issues on the queries.

• UserManagement: this is a generic module to manage the users that can access to the cloud

resource monitoring module.

Page 127 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 6.3. Data interoperability (AFarCloud Data Model)

Data Interoperability in AFarCloud will be managed by using a common data model for information

storage and common data formats for information exchange. More information will be available in

D2.6.

6.4. Data Access Manager

6.4.1. Description

This component provides interfaces able to insert/retrieve/update information in the AFarCloud

ontology and in the relational and non-relational databases. Queries to the ontology will be

implemented through a SPARQL Endpoint. Apache Jena Fuseki will be used as SPARQL server.

Queries to the relational database will be implemented by means of SQL statements. For non-

relational databases the query language will depend on the NoSQL database that is chosen, e.g.,

MongoDB, HBase, InfluxDB, etc.

6.4.1. Interfaces

The Data Access Manager (DAM) defines three interfaces: OntoManager (in Table 5), RDBManager

(in Table 6) and NRDBManager (Table 7). The main goal of these interfaces is to manage the

connection to the semantic repository using the Jena library and to the relational and non-relational

databases, respectively. These interfaces are used by the Data Query for CRUD operations to the

AFarCloud repositories.

6.4.1.1. OntoManager

Table 5. OntoManager interface

(public) void addModel (File rdf)

(public) void addModel (Model m)

Adds the content in the RDF file or the model to the

default graph of the dataset if it does not exist.

(public) void replaceModel (File rdf)

(public) void replaceModel (Model m)

Create/replace the default model of the dataset with the

content in the RDF file or with the model m.

(public) void replaceInfModel(Model m) Put (replace) the inferred model of a Dataset

(public) deleteModel (dsServiceURI) Deletes the default model of the dataset.

(public) getModel (dsServiceURI) Returns the default model of the dataset.

Page 128 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 (public) List<Map<String, Object>>

queryModel(String squery);

This method provides the endpoint to query the dataset.

(public) void updateModel (String

squery)

This method provides the endpoint to update (INSERT,

DELETE) the dataset.

(public) void updateOntologyFile() This method saves the content in the dataset to an RDF

file.

(public) String[]

getRegisteredReasoners()

Returns the list of registered reasoners configured in

the properties file.

6.4.1.2. RDBManager

Table 6. RDBManager interface

(public) queryDatabase(query) This method provides the endpoint to query the database.

(public) openDBConnection() This method establishes a database connection

(public) closeDBConnection() Closes the connection to the DB.

(public) insertDatabase(query) This method provides the endpoint to insert data to the

database

6.4.1.3. NRDBManager

Table 7. NRDBManager interface

(public) queryDatabase(query) This method provides the endpoint to query the database.

(public) openDBConnection() This method establishes a database connection

(public) closeDBConnection() Closes the connection to the DB.

(public) insertDatabase(query) This method provides the endpoint to insert data to the

database

6.4.2. Components Diagram

The Data Access Manager component relates to the rest of the components in the architecture, as

shown in Figure 12:

Page 129 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Figure 12: Data Access Manager Components Diagram

6.5. Data Query

This component processes any query made to manipulate data in the AFarCloud repositories. The

queries are the mechanism used by the rest of the AFarCloud components to consult or update any

information from the AFarCloud repositories. This module will provide predefined methods for certain

queries (e.g., getCapabilities(vehicle), getTasks(Mission, Vehicle), etc.) and will translate them to the

database specific syntax that will be forwarded to the Data Access Manager. This way, components

do not need to be aware of where and how the data are stored.

6.5.1. Interfaces

The Data Query (DQ) defines three interfaces: SemanticQueryFeeder that is used by other modules

to send queries to the ontology, SQLQueryFeeder and NoSQLQueryFeeder for relational and NoSQL

databases, respectively. These interfaces will provide methods with predefined queries for the most

common functionalities and also generic methods (ontoQuery and dbQuery) for more complex

queries.

6.5.2. Components Diagram

Figure 13 shows the relation of the Data Query with the rest of the middleware components.

Page 130 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Figure 13: Data Query components diagram

6.6. Device Registry

6.6.1. Description

The Device Registry registers the animals, IoT devices and vehicles in a farm (i.e., sensors, collars,

tractors, UAVs, etc.) and their static features in the AFarCloud data repositories. In the case of

sensors, this static information includes the type of information observed by the sensor, the range of

possible values, the units of measure, the location (if static), the identifier, etc. For UAVs, it includes

the equipment onboard, the type of commands that the vehicle can understand, etc.

For sensors, the data model to be used will be based on the one provided by FIWARE, a framework

for open source developments.

6.6.2. Components diagram

The Device Registry calls the Data Query to store and update the information related to the IoT

devices and vehicles in the farm. This component offers the registration functionality as a REST

service that can be invoked by the MMT. This service hides the complexity of the registration process

from the farmer.

Page 131 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Figure 14: Device Registry component diagram

6.7. Streaming Engine

6.7.1. Description

The Streaming Engine (SE) publishes and subscribes to streams of records in real-time. The main

features of this component are the following:

• High performance and scalability in data streams management;

• Reliably getting data between distributed systems, applications and data sources;

• Handling Big Data operations and enabling integration with a large number of heterogeneous

data sources and advanced database solutions.

The SE provides real-time streaming data pipelines that reliably exchange data between the

AFarCloud repositories and the Decision Support System. During the project we will analyse the

possibility to directly integrate other components of the AFarCloud platform (e.g., MQTT broker, REST

server, DDS Manager, etc.) with the SE by corresponding connectors. The SE will implement a

publish/subscribe interface, by means of a well-known technology (e.g., Apache Kafka).

6.7.2. Components diagram

The following figure presents the general architecture of the SE, and a proposal of its interfaces:

Page 132 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Figure 15: Components of the Streaming Engine (SE)

The SE may be integrated with two groups of data sources:

• AFarCloud cloud repositories

• Measurement devices

For each type of data source, a corresponding connector which unifies data format needs to be

applied. Data streams are transmitted from connectors into the Cluster, which distributes messages

under a publish/subscribe paradigm into the Streaming Processors, the Database and the Decision

Support System (e.g., Real-time Analytics and Batch Analytics engines).

The main Streaming Engine components are described below:

• Cluster – the SE runs as a cluster on one or more servers. The cluster stores streams of

records in categories called topics. Each record consists of a key, a value, and a timestamp.

Brokers (a part of the cluster) are the primary storage and messaging components of SE.

• Database connectors - there could be various source connectors (e.g., MySQL, SQL,

PostgreSQL, MongoDB, etc.) that could obtain a snapshot of the existing data in a database

Page 133 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 and then monitor and record all subsequent row-level changes to that data. All of the events

for each table are recorded in a separate topic, where they can be easily consumed by

applications and services.

• Data source connectors - integration with existing MQTT brokers and REST server. This

component connects to a MQTT broker, REST server, etc. and publishes data to the specified

topics.

• Stream processor - is a node in the processor topology that represents a real-time single

processing step. It takes continual streams of data from input topics, performs some

processing on this input, and produces continual streams of data to output topics. This

component enables i.e., aggregates of streams or joins streams together. For example, this

component might be used to detect and generate alerts.

• Database (persistency) - the SE enables also integration with a dedicated data warehouse

to store streaming records in a fault-tolerant durable way. The streaming platform relies heavily

on the filesystem for storing and caching messages.

6.8. Device Manager

6.8.1. Description

This component is responsible for the management of all operations related to standalone devices

(sensors, actuators, gateways, etc.) and groups of devices (e.g., WSNs) connected to the AFarCloud

platform. The management of data flows with vehicles (e.g., GVs, UAVs) will be carried out by the

Mission Manager. By device operations we understand the following actions on this kind of devices:

a) Setting the sampling rate of sensors;

b) Sending notifications on firmware updates to sensors and actuators;

c) Sending commands to actuators;

d) Receiving alarms generated by sensors and actuators. The Device Manager will forward these

alarms to the MMT;

e) Receiving device data (e.g., measures);

f) Storing all data sent by sensors and actuators (e.g., alarms, device data, etc.) in the AFarCloud

repositories.

Operations a), b) and c) will be triggered by the system operator through the MMT.

Page 134 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 6.8.2. Components diagram

The Device Manager manages all requests on devices done by the system operator through the MMT.

For MQTT devices, requests to change the sampling rate of sensors, actuator commands and

notification of firmware updates will be published through the MQTT Broker, that will publish messages

on specific topics addressed to the involved MQTT devices.

Alarm Processing & Reporter and the Environment Reporter transfer data coming from devices (i.e.,

alarms, measures and other device data) to the Device Manager. The Device Manager sends this

data to the Data Query to be stored in the AFarCloud repositories, and forwards alarms to the MMT

in the FMS.

Figure 16: Device Manager components diagram

6.9. Mission Manager

6.9.1. Description

This component manages all operations and data flows in which vehicles (i.e., GVs, UAVs) are

involved. The main duties of this component are related to the delivery of the mission plan defined by

the Farm Managing System, as well as receiving the information from the vehicles that participate in

the mission according to its progress.

Page 135 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Also, this component is responsible for sending events to elements in the Hardware Layer. We will

consider as events all relevant data (i.e., command to abort a mission) sent by the middleware that

should be considered by vehicles or other devices. Events will be generated by the Farm Management

System as a result of an analysis of data.

6.9.2. Components diagram

As it was mentioned before, the Mission Manager component interacts with the other software

components of the semantic middleware architecture in four ways:

a) Receives vehicle information about the mission progress (Mission Processing & Reporter),

alarms (Alarm Processing & Reporter) and data from sensors onboard the vehicles

(Environment Reporter);

b) Sends the mission plan to UAVs (DDS Manager) or ground vehicles (ISOBUS Gateway);

c) Stores mission plans and data received from devices, in the AFarCloud cloud repositories

(Data Query);

d) Sends events to UAVs, ground vehicles, or other devices.

Page 136 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Figure 17: Mission Manager components diagram

6.10. Mission Processing & Reporter

6.10.1. Description

This component is responsible for two tasks in the semantic middleware architecture: firstly, it reports

the status of the mission to the High-Level Services of the middleware (specifically, to the Mission

Manager). Secondly, it processes the information to ensure that it is received with the quality and

cleanness expected from the data (e.g., correct data formats)

6.10.2. Components diagram

The Mission Processing and Reporter component interacts with the other software components of the

semantic middleware architecture in two ways as well: first, it receives the information, according to

Page 137 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 the data format defined for the AFarCloud project, either from the DDS Manager that is ruling data

transfers between the distributed DDS parts, or from the ISOBUS interface with ground vehicles.

Secondly, and once the information received has been processed so that it is internally manageable,

it will be transferred to the Mission Manager component via the sendMissionStatus method invocation,

which will transfer it back to the Farm Management System, where the mission progress can be

displayed.

Figure 18: Mission Processing & Reporter components diagram

6.11. Alarm Processing & Reporter

6.11.1. Description

We will consider as alarms messages sent from a device, sensor or vehicle to the middleware to

inform about abnormal behaviour at equipment or functional levels. The alarm at equipment level

indicates that the equipment is not functioning correctly e.g., the IMU in a UAV. Functional level

represents a higher level of abstraction than equipment level. An alarm at functional level means that

an entity will not be able to execute an action that requires a certain functionality like localisation or

navigation, probably due to an alarm at equipment level.

Page 138 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 6.12. Environment Reporter

6.12.1. Description

The Environment Reporter (ER) deals with raw data provided by sensors in the AFarCloud (AFC)

hardware layer (e.g., standalone devices, devices on semi-autonomous ground vehicles and aerial

vehicles) arriving through the MQTT, REST or DDS interfaces. The core function of the ER should be

to report and validate any data or information related to environment, approving it to be stored in AFC

repositories (in the cloud). Such data can be coming directly from the sensors, but can also be pre-

processed data, fused data or extracted information (on environment, crops and livestock) coming

from the components responsible for such operations, respectively, which have been previously fed

with raw data, by the ER, or which requested stored data, through queries. The ER checks basic

aspects of the received data, such as, validating it according to the expected value ranges considering

the respective sensor specifications. This occurs before forwarding such data to the Data Pre-

Processor (DPP) and before data or information is sent for storage at AFC repositories, both during

missions (online), and pre- or post- mission (offline). The ER can also verify if the received raw data

needs pre-processing involving data fusion, e.g. in case of missing georeference metadata associated

to sensors measurements, respectively, and forward that indication to the DPP together with the

validated raw data to be pre-processed appropriately.

Since the majority of raw data needs pre-processing and data fusion, e.g. to filter duplicates and/or

include georeference metadata, only when the ER receives back the data already pre-processed,

either coming directly from the DPP, or from the Data Fusion (DF) component if data fusion has been

performed, it can then, after new validation, send such pre-processed data to AFC cloud for storage.

This will occur via the Mission Manager or the Device Manager components, or eventually directly via

the Data Query component, to which the ER will be implicitly confirming the proper acquisition of the

relevant respective data, or it can instead eventually report any failure explicitly.

Summarizing, the ER validates, relays and reports sensor data. The latter reports can be used by the

MMT in the Farm Management System to be aware of any sensor failure(s) and react upon it if

necessary. Moreover, the ER validates, and relays extracted environment-based information or

knowledge associated to livestock and crops to be exploited in the cloud, namely by MMT and DSS.

6.12.2. Components diagram

The Environment Reporter (ER) component interacts with other components, receiving and providing

data, as follows. First, it receives data according to the defined AFarCloud format, via DDS Manager

in case such sensor data comes from aerial vehicles, or via MQTT or REST in case the data comes

Page 139 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 from ground vehicles’ onboard sensors or deployed sensors in the farm. Secondly, raw data, should

be kept in a local DB located at the edge level, close to where effective data pre-processing should

take place, i.e., at Data Pre-Processor (DPP) and Data Fusion (DF) components.

The DPP sends the outcome of pre-processing data either to the DF component if data fusion is

necessary, or directly to the ER otherwise. In other cases, uncorrelated to DPP operation, the DF and

the Knowledge Extractor (KE) components send fused data or extracted information/knowledge,

respectively, to the ER for it to validate and send to the AFC repositories for storage. On the other

hand, the ER can send data to two distinct components, which are the Mission Manager and the

Device Manager. In order for that to take place, ER’s postSensorReport and postDeviceReport

methods are used, respectively. On both situations, after receiving such data, those components

should forward it to the Data Query, which will store it in the appropriate AFarCloud repositories.

Figure 19 presents the components diagram of the ER.

Figure 19: Environment Reporter components diagram

Page 140 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 6.13. Data Pre-Processor

6.13.1. Description

The Data Pre-Processor (DPP) component performs (raw) sensor data cleaning and filtering, to avoid

missing values, impossible combinations and outliers. All this processing is done online (during

missions), with some latency. Pre-processing could be done at the edge level, where raw data is

acquired from sensors and/or retrieved if previously stored, to diminish input lag of the values acquired

by the sensors. Pre-processed environment data related to livestock and crops, depending on the

type of sensor can eventually already include metadata. These data should be stored preferably at

an Edge Data Storage for further processing, however can also be forwarded to the cloud

repositories/DB to be eventually exploited by the MMT/DSS in the Farm Management System if

needed, standalone or together with information/knowledge extracted by the Knowledge Extractor.

Also, if such data needs to be correlated with other relevant or associated data from other sensors,

which is called Data Fusion, such process is be done within the Data Fusion server/component. By

fusing data, it is possible to have a global vision of the data collected from the several sensors in a

certain domain.

A more detailed description of the Data Pre-Processor component is available in deliverable D4.1

“Data fusion server”.

6.14. Data Fusion

6.14.1. Description

The Data Fusion (DF) component aggregates data from multiple sources in one single form, making

data more readable, consistent and accurate. Such fusion could be associating vehicles

proprioceptive data to exteroceptive data acquired by embarked environmental sensors, e.g.,

associating position (from vehicles own GPS chipset/sensor), as metadata, to the environment sensor

readings, namely exploiting timestamps and sensor IDs, respectively. This fusion is done after data

from multiple sensors is pre-processed by the Data Pre-Processor, for this reason Data Fusion is not

done in real time. Such processing also considers the discrepancies in the timing/synchronization of

the data streams that are being fused.

Data fusion is not necessary for all data, but only in some specific cases. In other cases, pre-

processing data is sufficient for further processing and reasoning. It is necessary to determine which

data will be fused and which will not.

Page 141 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 A more detailed description of the Data Fusion component is available in deliverable D4.1 “Data fusion

server”.

6.15. Knowledge Extractor

6.15.1. Description

The Knowledge Extractor (KE) component exploits environment data (pre-processed, fused and/or

including metadata, e.g., georeferenced data) related to livestock and crops, which is previously

stored in the AFarCloud cloud repositories, for analysis and extraction of information or knowledge.

The outcome of this process should be stored at the cloud repositories, to be eventually used by MMT

and/or DSS if needed, standalone or together with data previously pre-processed and/or fused by the

Data Pre-Processor and the Data Fusion components, respectively. The outcomes from the

Knowledge Extractor should be validated by the Environment Reporter, which is the component in

the Middleware that validates and relays such extracted information/knowledge to be stored in the

AFarCloud repositories.

A more detailed description of the Knowledge Extractor is available in deliverable D4.4 “Livestock and

crop quality assessment framework”.

6.16. Image Processing Platform

6.16.1. Description and use cases

The main objective of this component is the integration of the image processing algorithms needed to

extract data from the optic sensors, such as: multispectral cameras, hyperspectral sensors, visible

cameras or thermal cameras.

Due to the special nature of this component in terms of hardware capabilities (i.e., depending on the

data sources and the complexity of the algorithms to be performed, different processing capabilities

may be required), in each local or holistic demonstrator, the partners involved will define a customized

Image Processing Platform, according to the functionalities required and the hardware and software

architecture planned for the demonstrator. Thus, the Image Processing Platform (IPP) is a component

deployed at the Edge of the AFarCloud architecture.

The main features of each of the three possible customizations of the IPP, are presented below:

Page 142 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Livestock location and tracking:

The goal of this customization of the IPP is to use machine learning algorithms on aerial images to

detect and count pieces of cattle. The results can be used to support farmers with daily inspection, or

to help them find and locate lost/new-born animals in large grazing areas. To enable such

functionality, the IPP uses a convolutional neural network and deep learning.

Aerial images are captured by RGB cameras mounted on UAVs, stored in a memory stick or SD card,

and downloaded to the IPP. As a result of the processing, the IPP returns the detected animals. Users

(farmers) can choose to keep the results in text or in image format. The results and/or referenced

images are sent to the AFarCloud repositories (as text) and/or to the Image Data Manager (as image)

for long term storage.

In the following figure, it is described how the data flows from the devices deployed in the farm, to the

AFarCloud Cloud infrastructure:

Figure 20: Data flow of the IPP for livestock location and tracking

Vigour, water stress and weeds & dead plants detection:

The objective of this customization of the IPP is to analyse the quality of vineyard cropping through

georeferenced mosaics provided by UAVs, which are obtained by the pre-processing of a

georeferenced images set of the field.

As a source of the analysis, georeferenced images taken by a UAV flight with a multispectral camera

and a thermal camera embarked are used. Besides, GPS and IMU data are also collected. This data

is stored in a memory stick or SD card, and downloaded to the IPP. Once this information is uploaded

to the IPP, a multiband georeferenced aerial image of a pilot area in the vineyard is obtained. The

computer vision algorithms of the IPP detect and match hundreds of overlapping images, accurately

estimate internal and external camera parameters, create point cloud representations of the 3D

surface and finally combine everything into a unique georeferenced multiband orthomosaic image.

One of the most notable sets of algorithms for this purpose is Structure for Motion (SfM). SfM typically

utilizes scale invariant feature transform (SIFT) to locate important features in an image, known as

keypoints. Keypoints are then matched in each image based on the minimization of Euclidian

Page 143 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 distance. These keypoints are then tracked from image to image, enabling the accurate estimation of

both camera orientation, as well as the keypoint location.

The result of the process carried out by the IPP under this customization, is the following:

• Vigour and water stress:

Plant vigour is based on the calculation of the normalized difference vegetation index (NDVI),

applied on the specific spectral band data taken, by measuring the difference between near-

infrared (which vegetation strongly reflects) and red light (which vegetation absorbs). NDVI vary

in ranges between -1 and +1.

Water stress is based on the calculation of the crop water stress index (CWSI) by measuring the

difference between the canopy and air temperature. CWSI vary in ranges between 0 and +1.

• Dead plants and weeds detection:

These parameters are evaluated with the combination of NDVI index and the training of a

convolutional neural network. The goal of NDVI in this task is the vegetation detection, which

means, the discrimination between pixels that represent green vegetation and the other pixels.

This process enables to simplify and speed up the subsequent plant detection and classification

subtasks, providing a mask image. Pixels that belong to vegetation and no vegetation need to be

classified between crop and weeds and dead plants.

Generally, the resulting data and not the images due to their large size, will be stored in the cloud

repository of the MW.

A data flow diagram for this customization of the IPP is shown below:

Figure 21: Data flow of the IPP for vigour, water stress, weeds & dead plants detection

Page 144 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Estimation of the main cropping indexes:

This customization of the IPP uses as data sources the images taken by a high-resolution camera

and a multispectral camera embarked in a UAV. The goal for the first year of the project is to store

these images in a memory stick or SD card, and downloaded to the IPP. Through these images, the

IPP estimates the main cropping indexes.

The drawback of this process is the amount of time it takes. We are aware that some farmers that

were already using computer vision techniques to obtain spectral vegetation index maps, have

stopped doing so because it is a time-consuming process even when running on a high-performance

machine (i.e. taking the SD card, copying all files to a computer, running the multispectral mosaic

algorithm, and saving the resulting maps may take around 2 hours).

From the first year of the project onwards, we will focus on trying to make the UAV completely

autonomous and being able to generate the maps in nearly real-time (e.g. 20 seconds delay

maximum). For UAVs with enough capabilities, we will run a grid map algorithm (which is similar to a

multispectral mosaic algorithm) in real time, on the Session Border Controller of the UAV. Once the

process is finished, the UAV will send the results to the cloud repository once it has landed. For UAVs

lacking these high-performance capabilities, we might need to send the information to the cloud and

run this algorithm there. This can be seen as distributed computing, as it is described in Figure 22.

Figure 22: Data flow of the IPP for the estimation of the main cropping indexes through distributed computing

For the estimation of the main cropping indexes, the IPP implementation is based in OpenCV.

OpenCV has four distinct motion models, illustrated next:

• Translation → Two scene images shifted by (x,y) (2 parameters);

• Euclidean → Two scene images shifted by (x,y) and/or rotated by an angle (3 parameters);

Page 145 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 • Affine → Two scene images transformed by rotation, translation, scale, and shear (4

parameters);

• Homography → Two scene images transformed according not only to 2D effects (as the

previous ones) but also with some 3D transformations (8 parameters).

Figure 23: Homography procedure

To be applied to our agriculture case study, from the detected aligned images’ keypoints in common

- using Fast Library for Approximate Nearest Neighbours (FLANN matcher) - a perspective

transformation matrix (homography) is computed between both scenes. Then, the image to be aligned

is cropped from the overlapped detected corners and stretched to the same size as the red filtered.

The framework’s alignment node is the main responsible for converting and aligning the captured

images. After the multispectral imagery correction, it is possible to proceed with the lenses’ alignment.

The image alignments are performed according to the previously mentioned homography method.

Figure 24: Misalignments between scene images from different lenses. The blue square is surrounding the blue
band image (a), whereas the red square is the contour of the red band image (b). The yellow square represents

the cropped images after transformations and illustrates the scene area in common (c).

According to the index fusion node, the alignment node’s received message needs to be decomposed

to obtain the turned-on indices, the images required to calculate those requested indices and the

respective GPS and IMU sensor’s information.

Hence, the index fusion node is essentially composed by the following two steps:

Page 146 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 1. Spectral indices bands’ fusion (NDVI, MSAVI, RDVI, ENDVI)

2. Mapping

Figure 25: Image layers

Nowadays, grid maps are extensively used in mobile robotic mapping, thus there will be a specific

C++ Grid Map library, as a ROS interface, capable of storing distinct types of terrain features, like

elevation, variance and colour. Grid maps can also have an unlimited number of layers and it is

possible to convert them into other ROS message types, such as PointCloud2, OccupancyGrid and

GridCells. For viewing purposes, it is also fully integrated with the ROS’ 3D visualization tool, known

as RViz.

This Grid map will be constructed by the multispectral camera images and by GPS and IMU data.

With this information it is possible to create a dynamic map without using stitching. After the dynamic

mapping is created and with the index fusion calculated, it is possible to evaluate the crop healthy

(this evaluation was done by NDVI index)

Figure 26: NDVI representation in a crop

6.16.2. Interfaces

The interaction with the other functional components will be:

Page 147 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 • Aerial vehicles: Image sensors embarked in UAVs will provide georeferenced mosaics/images

to the high-performance IPP. The load of images from UAVs to the IPP will be done through

an external storage device (e.g., USB disk, SSD card, etc.)

• Third Party Data: Weather data will be used by the IPP to estimate the water stress in the

crop.

• Cloud Data Storage: Data (not images) extracted by the IPP will be stored in the cloud

repository in the Middleware.

• Image Data Manager: Images generated by the IPP will be stored in the Image Data Manager

of the Middleware.

6.17. Image Data Manager

6.17.1. Description

The Image Data Manager handles, stores and catalogues georeferenced images, image data and

other types of raster data. It maintains a record of various data associated with each image, such as

the image location data, the acquisition time, the geometric extent on the ground, the geometric

models, etc. It can be used to retrieve image data as service (WMS) or image files, where the images

can be ortho-corrected, reformatted, trimmed and resampled. The Image Data Manager is based on

Keystone Enterprise (COTS).

Following an example of usage is provided: after image data is analysed by the Image Processing

Platform and a resulting raster map is created (e.g., with pest affected vegetation), this raster map is

uploaded to the Image Data Manager and a WMS layer is created. The WMS server is serving the

WMS layer to the MMT, which shows the map to the end user. The retrieved images, or a selection

from them, are transferred to the Image Data Manager to be stored and catalogued so they can be

used later.

6.17.2. Interfaces

• Image Processing Platform:

o Receives images that need to be stored and catalogued;

o Receives result map data in raster-form to be shown in MMT;

o Sends images to Image Processing Platform for time-series and longitudinal analysis.

• MMT:

o Shows image data through the WMS service.

Page 148 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 6.18. MQTT Broker and MQTT Clients in the

Middleware

6.18.1. Description

MQTT is a Client Server publish/subscribe messaging transport protocol. Since MQTT decouples the

publisher from the subscriber, client connections are always handled by an MQTT broker. It is

important to note that the MQTT broker uses the topic of a message to decide which client receives

which message. In MQTT, the term “topic” refers to an UTF-8 string that the broker uses to filter

messages for each connected client. The topic consists of one or more topic levels. Each topic level

is separated by a forward slash (topic level separator).

6.18.2. MQTT QoS configuration

The Quality of Service (QoS) is defined as the agreement between the sender and the receiver of a

message. There are 3 possible QoS levels in MQTT to guarantee the delivery for a specific message:

• QoS 0 – at most once: only delivers the message to those online and subscribed to that topic

at the time of data release (similarities to how UDP protocol works).

• QoS 1 – at least once: the message is delivered and there is evidence of that delivery but no

assurance that the delivery is unique (potential duplicity of package delivered because the

ACK has not been received / properly interpreted).

• QoS 2 – exactly once: is delivered and there is evidence of it.

The client that publishes the message to the broker defines the QoS level of the message when it

sends the message to the broker. The broker transmits this message to subscribing clients using the

QoS level that each subscribing client defines during the subscription process. If the subscribing client

defines a lower QoS than the publishing client, the broker transmits the message with the lower quality

of service.

QoS is a key feature of the MQTT protocol. QoS gives the client the power to choose a level of service

that matches its network reliability and application logic. Because MQTT manages the re-transmission

of messages and guarantees delivery (even when the underlying transport is not reliable), QoS makes

communication in unreliable networks a lot easier.

Within the AFarCloud context, as long as it is considered that the duplication of messages is not

critical, the ideal seems to be to publish with a quality of service level 1, having subscribers using QoS

Page 149 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 1 as well. However, if there is an area of the deployment where such possible duplication becomes

problematic, it would be necessary to resort to a QoS 2 level.

6.18.3. List of MQTT topics

Considering the data that is going to be exchanged in the AFarCloud scenarios, we propose to follow

a topic structure based on a variation of the OMA NGSI-LD information model (see D2.6 for more

details). An example of a topic for reporting observations from sensors following this model is:

project/scenario/service/type_of_device/deviceID/data

where type_of_device represents a standalone sensor, a sensor mounted on a GV, an actuator or

a gateway.

The topic structure proposed above is considered the ideal for the deployments within the AFarCloud

demonstrations, although it is more complicated to subscribe to the specific data of interest, since it

is necessary to know in detail where to subscribe.

However, to somehow ease this burden, when a client subscribes to a topic, it can subscribe to the

exact topic or use wildcards to subscribe to multiple topics simultaneously. A wildcard can only be

used to subscribe to topics, not to publish a message. There are two different kinds of wildcards:

_single-level (+), that replaces one topic level, and _multi-level (#), that covers many topic levels.

It is worth noting that in a scenario where anyone can exploit all the data, keeping a single topic for

all sensors could seem like a legitimate option. Nevertheless, it has implications of receiving too many

data, perhaps even not knowing the format followed by a new device entering the system, and also

may affect the overall functioning due to the processing capacity requirements that it would impose.

Another option, if there is a different cloud for each project scenario, would consist of reporting to

structures based on the establishment of the so-called mount points.

Taking all these considerations into account, a list of the topics for the communication between MQTT

devices and the MQTT Clients (publishers and subscribers) of the Middleware is provided below:

A. REPORTING A NEW MEASUREMENT SENT BY A DEVICE TO THE MIDDLEWARE

Proposed topic structure:

afarcloud/scenario/service/sensor/sensorID/measure

Proposed data model:

ref: "#/definitions/Measurement" (see Annex 2. Data Definitions)

Page 150 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 B. REPORTING A LIST OF MEASUREMENTS SENT BY A DEVICE TO THE MIDDLEWARE

Proposed topic structure:

afarcloud/scenario/service/type_of_device/deviceID/measureList

Proposed data model:

ref: "#/definitions/SensorDataList" (see Annex 2. Data Definitions)

C. REPORTING ALARMS SENT BY A DEVICE TO THE MIDDLEWARE

Proposed topic structure:

afarcloud/scenario/service/type_of_device/deviceID/alarm

Proposed data model: TBD

D. SETTING SAMPLING RATES TO SENSORS

Proposed topic structure:

afarcloud/scenario/service/sensor/sensorID/samplingperiod

Proposed data model:

ref: "#/definitions/SamplingPeriod" (see Annex 2. Data Definitions)

E. SENDING COMMANDS TO ACTUATORS

Proposed topic structure:

afarcloud/scenario/service/actuator/actuatorID/action

Proposed data model: TBD

F. INFORMING ABOUT FIRMWARE UPDATES TO DEVICES

Proposed topic structure:

afarcloud/scenario/service/type_of_device/deviceID/fwupdate

Page 151 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 The projected deployment will require for some of the equipment to receive certain firmware updates.

To do so, MQTT could be used accordingly. Depending on the device to update, different mechanisms

for firmware updates could be used:

• Standard MQTT management: MQTT subscribers of sensor nodes would subscribe at the MQTT

Broker at start-up for firmware updates. A specific MQTT topic would represent a firmware update

and could include the sensor type and vendor (e.g., /sensor/ams/ENS160). The MQTT message

for a firmware update would include the software version and the location where to fetch the

updated binary. This might be stored on a vendor specific platform. In case a firmware update for

a sensor was triggered, it would fetch the software version from the sensor, compare it with the

version on the sensor, and download the update if needed. The sensor node would fetch the

binary from the location given by the MQTT message and would deploy it to the sensor via the

available physical sensor interface (e.g., I2C, SPI). Software binaries might be provided in a

vendor proprietary format. This might be even encrypted. Neither the MMT nor the MQTT

broker/subscriber would need to interpret the content of such an update.

• Sensor ID replication: employing complementary tools that would allow us to replicate a sensor

ID, furthermore, let that sensor subscribe to a certain topic in order to later on receive the available

update. Once the transaction is completed, we could unsubscribe the real sensor again to avoid

that undesired malicious activities. The equipment waiting to receive firmware updates would not

be subscribed to a specific topic: thus, no one could maliciously subscribe to see what happens

(performing some kind of phishing). When someone wanted to send something specific to that

device, you could resort to subscribe it, using its unique ID, from a complementary tool, carry out

the desired update and unsubscribe it later once the transaction is formalized (e.g., Mosquitto, a

well-known open source MQTT Broker, allows it). There would be no conflict of repeated IDs as

long as the real device and the simulated one are not connected at the same time. Depending on

the broker used, the action before the arrival of two identical IDs would be one or the other: expel

the one that was already there, or discard the one that arrives last. As hinted earlier, the Mosquitto

MQTT broker implementation would expel the one that was currently subscribed, since it could be

a spurious one that remained after a sudden disconnection or fall of the broker. In any case, this

manual process could be considered as complementary to the other fully automated procedures.

This option would rely on a “subscribe trigger” that is decoupled from the network connection and

the subscription would be triggered via NFC (Near Field Communication) technology or a button

on the sensor node.

• Firmware updates protection through certificates: by using SSL over MQTT, a chain of certificates

could be setup. In this case, SSL certificates would be used to protect the confidentiality of the

Page 152 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 firmware exchange on the network. In theory, only one certificate would be needed if we trust all

the components of the project partners. However, this would mean that firmware updates from

one partner are potentially seen by other partners as well. If partners require to protect their data

from other partners, additional certificates could be installed. This would make sure that

communication between the cloud and partner A is encrypted with a different key than

communication with the cloud and partner B.

• Part-by-part firmware update: for devices that do not feature a huge memory, an approach based

on downloading a full firmware update could mean the device is cannot handle it. In those cases,

a part-by-part update would be welcome.

G. INFORMING ABOUT DSS ALERTS

Proposed topic structure:

afarcloud/scenario/service/dss/dssID/dssalert

The FMS will be able to inform the rest of the elements in the architecture about alerts generated by

the DSS. The FMS will implement a MQTT Publisher that will publish alerts triggered by the DSS, so

they can be available for interested subscribers.

6.19. REST Server and REST Services

Following a similar approach as in the case of MQTT we propose the following REST services for

reporting observations from sensors, and for sending data from collar devices to the Environment

Reporter (see Annex 2. Data Definitions for definitions of the data model).

SENSOR

POST /sensor/measure Store a new measurement

Parameters:

name: body

schema: ref: "#/definitions/Measurement"

Responses:

 200: "Successful operation"

 405: "Invalid input"

Page 153 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 POST /sensor/measureList Store a list of measurements sent by a device e.g., a UAV or a gateway

Parameters:

name: body

schema: ref: "#/definitions/SensorDataList"

Responses:

 200: "Successful operation"

 405: "Invalid input"

COLLAR

POST /collar/measure Store a new measurement from a collar device

Parameters:

name: body

schema: ref: "#/definitions/CollarData"

Responses:

 200: "Successful operation"

 405: "Invalid input"

POST /collar/measureList Store a list of measurements from 1 to n collar devices

Parameters:

name: body

schema: ref: "#/definitions/CollarDataList"

Responses:

 200: "Successful operation"

 405: "Invalid input"

REGIONS

POST /region/measure Store a new region measurement from IPP

Parameters:

name: body

Page 154 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 schema: ref: "#/definitions/RegionData"

Responses:

 200: "Successful operation"

 405: "Invalid input"

POST /region/measureList Store a list of region measurements from 1 to n

Parameters:

name: body

schema: ref: "#/definitions/RegionList"

Responses:

 200: "Successful operation"

 405: "Invalid input"

6.20. ISOBUS Gateway

6.20.1. Description

The ISOBUS Gateway provides an interface for data exchanging between the AFarCloud middleware

and the ISOBUS systems, by converting the planned field tasks into ISO11783-XML, the ISOBUS

standard data format; the resulting file will be manually loaded by an ISOBUS-compliant semi-

autonomous agricultural ground vehicle. In addition to this, the ISOBUS Gateway can also convert

the XML data logged during a treatment in order to be uploaded into the middleware.

The ISOBUS gateway will basically act as:

• A Content Delivery Network (CDN), in order to deliver to each user every ISO11783-XML file

that has been created by the architecture globally, with low latency, ensuring high performance

when the file is downloaded by the user from the cloud. There will be an ISOBUS repository

of ISO-XML files from where the user will download them. The CDN will provide the

infrastructure to deliver these files;

• A Data Format Converter, from the mission sent by the FMS in an AFarCloud compatible data

format (and forwarded by the Mission Manager to the corresponding ground vehicle) to the

ISO11783-XML de-jure standard.

Page 155 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 6.20.2. Functionalities

The relevant data flow is described in Section 7.3. The additional functions in this scenario that the

FMS (through the MMT) will accomplish are:

1. Create a prescription map containing the task data, thus performing a data mining across

these sources of data:

I. GIS database;

II. Data coming from any kind of sensors (e.g., on-the-field sensor networks, UAV images

and sensors, on-board tractor sensor, etc.)

III. Agronomist & DSS inputs to assess the mission’s purpose, chemicals/water employed,

etc.;

2. to feed the ISOBUS Gateway with a proper descriptor (hereafter mission file)

The exchanged data format (i.e., the mission file) between the Mission Manager and the ISOBUS

Gateway should resemble a geospatial raster data (e.g., the prescription map or georeferenced

treatment values for the selected task) containing the mission actions.

On the one hand, the functions of the ISOBUS Gateway when a user triggers the generation of an

ISO11783-XML file to be downloaded are (see Figure 27):

1. to be invoked by the Mission Manager when the FMS sends a mission plan;

2. to get as input the mission plan and format it to ISO11783-XML file;

3. to export the ISO11783-XML file and store it in a specific ISOBUS repository, accessible by

the MMT;

4. to deliver the file to the final user (i.e., the user, up to now (M12), will only download it and put

it in a USB drive and upload it onto an ISOBUS tractor), via the CDN.

On the other hand, the end-user might upload an ISO11783-XML log file resulting of a treatment. This

usually contains georeferenced, treatment-specific (depending on the implements employed) logs of

the treatment itself, such as:

• the covered area;

• Punctual/average/total amount of mass (e.g., fertilizer, pesticide, seeds, etc.);

• Time elapsed;

• Linear length covered;

Thus, the ISOBUS Gateway shall be also able (see Figure 28):

1. to store the manually uploaded ISO11783-XML file in the ISOBUS repository;

Page 156 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 2. to convert the XML log file back on the AFarCloud format to report on the result of GVs

missions;

3. deliver it back to the Mission Processing & Reporter;

Figure 27: ISO11783-XML download

Figure 28: ISO11783-XML upload

AFarCloud platform

Authe nt ica ti on &

Au th o rizat io n

MMT

1-Request a ISO-XML
file

GIS
Sensors

2-User Input

ISOBUS converter

Per-user ISOBUS
Gateway repository

4-ISO-XML File

3-Exchange XML File

Missions Manager

user

CDN

5-Download

AFarCloud platform

MMT

ISOBUS converter

Per-user ISOBUS
Gateway repository

2-ISO- XML File

3-Exchange XML File

Missions Manager

user

CDN

1-Upload ISO-XML
file

Hystory&Logs
Storage

4-File the Task Data

Further analys is

Aut hentication &

Aut horization

Page 157 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 6.20.3. ISO11783-XML

The ISO11783-XML files are formatted according to XML definitions version 1.0 with text coded in

UTF-8 and they could reference optional binary-coded data files for grid cell definitions or logged

process data. The validity of an ISO-XML file is defined by the schema ISO11783_TaskFile, that can

be found at https://www.isobus.net/isobus/attachments/files/ISO11783_TaskFile_V2-1.xsd .

The task is the central XML element in that describes an ISOBUS task and it contains references to

various other XML elements to express allocation of resources and specification of operations.

The XML file also allows defining the Treatment Zones that specify georeferenced values for the task.

The treatment zones are obtained by the prescription map created (e.g., by the Farm Management

System or by third-party data services) and they can be described as grid cell or as polygons as

shown in Figure 29.

Figure 29: Treatment zone examples

https://www.isobus.net/isobus/attachments/files/ISO11783_TaskFile_V2-1.xsd

Page 158 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 6.21. DDS Manager

6.21.1. Description

The DDS Manager is based on the open source DDS libraries provided by ADLINK. This DDS

Community Edition is a full-featured open source, genuinely free implementation of the Object

Management Group (OMG) Data Distribution Service for Real-Time Systems standard.

The goal of the DDS Manager is to implement a DDS interface in the AFarCloud Middleware to allow

the exchange of messages with DDS-compatible devices at the Hardware Level (i.e., UAVs). By

means of this DDS interface, the Middleware will be able to (a) send actions to UAVs; (b) collect the

status of actions; (c) collect data from sensors gathered by UAVs, and (d) collect alarms generated

by UAVs. All data flows exchanged through this interface will follow the AFarCloud common data

model defined in D2.6 Semantic Middleware, specifically the data format for missions with UAVs.

Conceptually, DDS manages a global data centric space, that we will call the AFarCloud DDS

dataspace. DDS provides QoS-controlled data-sharing. A global data centric space can be divided

into different isolated partitions. Under a data partition, applications communicate by publishing and

subscribing to UTF-8 strings called Topics, identified by their topic name. A partition has to

be explicitly joined in order to publish data in it or subscribe to the topics it contains. Subscriptions

can specify time and content filters and get only a subset of the data being published on the Topic.

In AFarCloud, we will create a different DDS partition for each of the scenarios to be deployed. For a

particular scenario, the DDS Manager will publish actions for UAVs in the scenario partition of the

AFarCloud DDS dataspace and will subscribe to data published in this partition by the DDS Proxy of

each of the UAVs. Different topics will be created to publish missions and events, and to subscribe to

alarms, battery measurements, locations, observations and images as defined in D2.6.

Page 159 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Figure 30: AFarCloud DDS dataspace

6.21.2. DDS Topic QoS configuration

DDS uses a ‘request vs. offer’ QoS-matching approach: a data reader matches a data writer if and

only if the QoS it is requesting for the given topic does not exceed the QoS with which the data is

produced. QoS settings can be linked to the topics defined by the DDS Manager. Different QoS

settings can be applied to different topics. The QoS settings of the DDS Manager should be correctly

configured according to the AFarCloud requirements. Depending on the durability and the reliability

of the information that is published, we can group data into 3 categories: soft state, hard state and

alarms:

• A soft state is a state that is periodically updated: e.g., the location of an UAV. In this case the

suggested QoS parameters are:

Reliability → BestEffort

Durability → Volatile

History →KeepLast (n)

Deadline →updatePeriod

LatencyBudget →updatePeriod/3

DestinationOrder→SourceTimestamp

Liveliness →Fixed timeout

Page 160 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 • A hard state is a state that is only sporadically updated and that often has temporal persistence

requirements: e.g., a picture of an obstacle. In this case the suggested QoS parameters are:

Reliability → Reliable

Durability → Transient | Persistent

History →KeepLast (n)

DestinationOrder→SourceTimestamp

Liveliness →Fixed timeout

• Alarms are described as the occurrence of something noteworthy for our system, e.g., a

collision alert, the battery below a given threshold, etc. In this case the suggested QoS

parameters are:

Reliability → Reliable

Durability → any

History →KeepAll

DestinationOrder→SourceTimestamp

Liveliness →Fixed timeout

6.21.3. List of DDS topics

The management of the topics in DDS is different from that of MQTT in terms of memory usage and

data porting. For scenarios in which it is desired to receive samples concurrently, it is necessary to

carefully design the number of topics to be used, as the level of concurrency remains at the granularity

of the subscriber. Taking into account these considerations and the different scenarios that will be

carried out in AFarCloud, it is proposed to use a different DDS partition name for each of the scenarios

to be deployed: e.g., partition name for scenario AS01: scenario_AS01

Besides, each of these partitions will manage the same set of AFarCloud topics. In order to define the

list of DDS topics to be used in the AFarCloud scenarios, we have considered the data format for

information transfer proposed in D2.6.

The end points for the communication between the Middleware and the UAVs will be the DDS

Manager (in the Middleware) and the DDS Proxy of each of the UAVs. The DDS topics to be used by

the DDS Manager in any of the AFarCloud DDS partitions are the following:

Page 161 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 a) Data sent from the DDS Manager to all DDS Proxies:

o New missions:

▪ Topic name for Publisher: “mission”

▪ QoS settings for the topic: TBD

o New events:

▪ Topic name for Publisher: “event”

▪ QoS settings for the topic: TBD

b) Data received by the DDS Manager from any DDS Proxy:

o Report of a mission:

▪ Topic name for Subscriber: “mission_report”

▪ QoS settings for the topic: TBD

o Alarm:

▪ Topic name for Subscriber: “alarm”

▪ QoS settings for the topic: TBD

o Observation:

▪ Topic name for Subscriber: “observation”

▪ QoS settings for the topic: TBD

o Location and orientation:

▪ Topic name for Subscriber: “pose”

▪ QoS settings for the topic: TBD

o Battery level:

▪ Topic name for Subscriber: “battery”

▪ QoS settings for the topic: TBD

o Image:

▪ Topic name for Subscriber: “image”

▪ QoS settings for the topic: TBD

Page 162 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 6.21.4. Components diagram

Figure 31: DDS Manager components diagram

6.21.5. Interfaces

Table 8. DDS Manager interfaces

(public) publish (topic_name,

AFarCloudsmsg)

This method is used to publish data compliant with any of

the AFarCloud’s IDLs defined in D2.6, for the specified

topic.

Page 163 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

7. Data Flow diagrams

7.1. Send a mission to a UAV

Figure 32: Send a mission to a UAV

Page 164 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 7.2. A UAV sends data to the Farm Management System

Figure 33: A UAV sends data to the FMS

Page 165 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 7.3. Send a mission to a semi-autonomous ground

vehicle

Figure 34: Send a mission to a tractor

Page 166 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 7.4. Configure a sampling rate on a MQTT device

Figure 35: Configure a sampling rate on a MQTT device

Page 167 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 7.5. Devices send data to the platform

Figure 36: Devices send data to the platform

Page 168 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Annex 1. WSN Technologies

Available technologies for supporting the physical layer (radio interface) for the sensor networks

include several established standards such as Zigbee, Bluetooth and WIFI, among others, for short

range networks. Long range LPWAN (Low Power Wide Area Networks) standards and technologies

such as LoRa, Sigfox and NB-IoT provide a solution when distance between the sensing nodes and

the gateway/sinking node is high, in the range of hundreds of meters to kilometres.

Short range radios, in the context of the AFarCloud project, are expected to be used in limited areas,

such as barns, farm buildings or limited open areas. Since radio range is short, to expand the area

covered by such wireless sensor networks, the area covered is expanded by increasing the size of

network, either by adding more nodes (to allow node to node hop communication), more gateways or

both.

Short range networks allow higher bit rates and hence higher speeds in data transmission and also

provide lower latency (the time between the data is collected until it is received by its destination) and

so are ideal for low latency applications namely real time monitoring, such animal health or industrial

process.

If the area to be covered is too large, a LPWAN based wireless sensor network provides a solution

by deploying sensing nodes that only communicate with gateways that are distant at hundreds of

meters to several kilometres by using more efficient radio protocols. Since LPWAN coverage is in the

range of tens of kilometres on open space, it allows direct communication between the sensing node

and the remote gateway without the need to deploy nodes as an intermediate hop to cover the larger

distances, which is required on the short-range networks.

The LPWANs key objective is low power usage and a higher radio range, however this is achieved at

the cost of lower bit rate, which impacts the latency, which is much higher than the latency of short-

range networks. Due to this, LPWANs are not adequate to do real time monitoring or real time process

control but are the ideal solution for low power and sparsely located remote sensing nodes.

Other possible alternative solutions to increase the area covered by the wireless sensor network, is

to store locally and temporarily the sensor data on a central node/gateway, and collect it, sometime

into the future, either by a fly by UAV that collects the stored data or by an agricultural vehicle

equipped with the proper hardware. In such cases sensors relay data to one or more central gateways

(in topological sense, not geographic) that accumulates the collected data and buffers/save it

Page 169 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 temporarily before it is downloaded to a mobile gateway (UAV or vehicle). As we can infer, latency is

very high, and so such networks aren’t adequate for real-time monitoring but adequate to long term

monitoring.

Some parameters for the most common short-range network standards are compared in Table 9:

Table 9: Comparison of short-range network standards

 Zigbee/6LoWPAN Bluetooth Wifi 3G/4G LTE

Data Rate 20,40,250 kbps 1000-3000 kbps 300 Mbps 7.2Gbps/100Gbps

Range 10-100 m 50 m 100m 1-3 km

Battery Lifetime 1-2 years Weeks to 1-2 years 1-2 days 1- 4 weeks

Standard IEEE 802.15.4

Zigbee (Zigbee Alliance)

6LoWPAN (IETF Open)

IEEE 802.15.1 IEEE 802.11 (n) GSM/UMTS/LTE

RF Band ISM Bands ISM Bands ISM Bands Licensed

Optimized for Reliability

Low Power

Low Cost

Low Cost

Convenience

Speed Speed

Reach

Network Mesh, Star, Cluster, Tree

Ad-Hoc Networks

Master – Slave Star, Ad-Hoc Star

Applications Industrial control &

monitoring

WSN

Home Automation

Personal data

connectivity

Wireless LAN

access

Mobile Wireless

WAN access

Node Hardware Available Available Available Available

Gateway

Hardware

Available Available Available Not Available

Page 170 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Wireless sensor networks based on short range radios, such as Zigbee and 6LoWPAN (IPv6 low

power wireless personal network), depend on the capacity of adding nodes that communicate with

each other to build networks that have a greater coverage than one single node can cover. The

capacity of adding nodes to the network means that these protocols allow the construction of different

network topologies, which allow the network to be adapted to the real-world use case as needed.

Other solutions impose the network topology, such as the master-slave for Bluetooth and so can’t

solve the range solution on their own except by adding more gateways to increase coverage.

Both Zigbee and 6LoWPAN offer a standardized solution for building wireless sensor networks, mainly

because of the 802.15.4 standard that defines exactly how access to the radio spectrum is done by

the radios.

Zigbee protocol is a Zigbee Alliance closed specification that specifies how Zigbee based devices

behave and they construct the sensor network. This standard must be used exactly to build a Zigbee

based network so that compatibility between different hardware providers can be assured.

Specifically, Zigbee specification defines the following three roles:

Zigbee coordinator → Creates the network and allows routers and end-devices to join the created

network. Since it is a core function, it can’t sleep for saving power and so must be permanently

powered on (Mains power).

Zigbee routers → Joins a Zigbee network previously created by the coordinator and receives,

transmits and assists in routing data. It allows other routers and end-devices to join the Zigbee

network. As the coordinator it cannot sleep and so it must have some form of permanent power (Mains

power).

End-Device → Must join a Zigbee network before being able to transmit or receive data through its

parent (Coordinator or router). Cannot assist on routing data but it can sleep to conserve power.

Zigbee protocol stack depends on 802.15.4 based radios and are available in devices that already

have the protocol stack embedded or offloaded to a controller micro controller. In the latter case, the

protocol stack is not freely available to be embedded or modified but an open source implementation

exists. Zigbee nodes aren’t directly accessible by other non-Zigbee devices, since a Zigbee

bridge/gateway is necessary to bridge the non-IP (Internet Protocol) Zigbee network with the standard

IP network used by computers and the Internet.

An alternative to the ZigBee based wireless sensor networks protocol is the open standard 6LoWPAN

(IPv6 Low power Wireless Personal Network), an IETF standard also based on the 802.15.4 standard,

that allows the establishment of wireless sensor networks but by using a compressed version of the

Page 171 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 IPv6 protocol standard. Since it uses the IPv6 protocol, bridging the 6LoWPAN networks with the

standard wireless/cabled IP based computer network is much simpler and avoids the existence of a

more complex Zigbee to IP bridge device. Another advantage to the 6LoWPAN based networks is

that nodes behave as standard network device, and so can be accessed and controlled from

anywhere, namely controlled directly from the AFarCloud Servers.

The 6LoWPAN network topology is simpler than the Zigbee:

Gateway → Relays and routes end-node data from the IPv6 based 6LoWPAN network to the

backbone cable/wireless IPv4/IPv6 network, allowing it to reach the back-end services such the cloud

server.

End-Node → Devices that gather sensing data and transmits it to neighbouring nodes and/or the

gateway. End-nodes can create between them a mesh network that allows information to be routed

across the sensor network until it reaches the gateway and avoiding network areas that are out of

reach, route to nowhere or have failed.

While CoTS (Commercial off The Shelf) based hardware that implements the 802.15.4 for 6LoWPAN

and Zigbee standard are readily available, alternatives for accessing the radio spectrum also exist so

that only access to the radio interface is provided and have no associated standard (An example is

TI FSK sub GHz CC1101 transceiver). Such radios are useful if the Zigbee or 6LoWPAN based WSNs

are too complex or expensive to implement, but on the other hand requires that all components for

the WSN be specifically implemented namely the mesh network management protocols.

When the area needed to be covered is higher than that is possible through a low range sensor

network, a solution based on LPWAN or a solution based on data store and forward are more

adequate than the short range based WSNs.

LPWAN networks have a high coverage range at the cost of data-rate and latency while requiring

very little amounts of power. In fact, the transmission of data through radio can be characterized by

the following characteristics: signal range, data throughput and energy conservation. Of the three

characteristics, it is only possible to choose two of them at any time. As an example, if high data

throughput and signal range is needed, it is not possible to have low power usage. If low power and

signal range are needed, data throughput must be compromised.

Page 172 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Table 10 compares three of the LPWAN implementations.

Page 173 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Table 10: Comparison of LPWAN implementations

 LoRa Sigfox NB-IOT

Data-rate 1-50 Kbps dep on range 100bps 250 kbit/s (multi-tone)

20 kbit/s (single-tone)

Range 15 Km (Rural) at 1kbit/s

5 Km (Urban)

30Km (Rural)

10Km (Urban)

15 Km

Battery Lifetime 10 years 10 years 10 years

Standard LoRa Alliance Proprietary 3GPP Rel 13

RF Band ISM ISM Licensed

Optimized for Low power

Range

Low power

Range

Payload ≥ 12 bytes

Low power

Bandwidth

Network Star Star Star

Applications IoT

Smart Devices

Smart Agriculture

IoT

Smart Devices

IoT

Smart Devices

Duty Cycle 1% / Hour (36s) 1% / Hour (36s), max 140

messages per day,

and/or 6 mess/h

100%

Bidirectional Yes Yes, limited to 12

msg/day @ 8 bytes

Yes

Node Hardware Available (5€-10€) Available (5€-10€) Available (10€-15€)

Gateway Hardware Available (100€-1000€) Not Available Not Available

Depends on Free implementation Sigfox Network Operator Mobile Network Operator

Page 174 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Competing technologies to the ones described do exist e.g., Weightless and DASH7, however, choice

was made between the technologies that have readily available sensor node hardware and

connectivity, so that an AFarCloud wireless sensor network can be deployed without being restrained

by the lack of wireless radio hardware. Note that 5G NB-IOT, from 3GPP Rel 16 is not considered,

due to low general availability hardware and operators.

Of the three compared technologies, LoRa is the only one that allows the building of a complete

wireless sensor network without depending on an external network operator. While with LoRa there

is no dependence on the network operator service and coverage, it also means that the network may

need to be built from the ground up by providing the LoRa gateways that allow to cover the required

areas and provide the required service level. With the Sigfox and NB-IoT, coverage and service level

are dependent on the network operator and their back-end services but is not another additional

component to the network.

Multiple LoRa gateways can be deployed to allow a greater coverage range and availability, but also

need to relay the received data to the AFarCloud backend services. LoRa gateways that relay the

collected data either to the AFarCloud private servers located at the farm, or to the AFarCloud cloud

servers, require a backhaul data connection, either by using mobile services (3G/4G) and so

dependent on the availability of a mobile operator network with the associated costs, or cable

(Ethernet) connectivity to either the local network or to an internet access point. In either case, such

relaying may not be possible either due to the impossibility of extending an Ethernet cable or by

lacking mobile network coverage or due to low mobile network signal.

Specifically, for solving this issue, the LoRa gateway can store and hold the data until a fly by UAV or

terrestrial vehicle comes in range and sinks the data from the gateway, so it can be delivered to either

a backhaul connected gateway or to the farm network. Since LoRa gateway hardware is available, as

specialized gateway with such functions can be built, which is not possible with other LPWAN

solutions.

Antenna placement and geometry is central to the performance and coverage of LoRa WAN

networking. For areal platforms, this is especially interesting with the population of UAV in the

AFarCloud project. The record of receiving a LoRa packet (albeit from an elevated balloon is 700+

km.[https://www.thethingsnetwork.org/article/ground-breaking-world-record-lorawan-packet-

received-at-702-km-436-miles-distance]

Page 175 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Figure 37: Data collection through UAVs for low range WSNs

A single gateway can be a single point of failure (SPOF) either if they fail (hardware issue, power

issue, software issue) or because they lose connectivity to the backhaul.

As such, the requirement for resilient and high availability WSN is the necessity of availability of

several LoRa gateways with overlapping coverage areas.

Store and forward solutions as depicted by the UAV fly in or the tractor being in range of a gateway

can be applied to both LPWAN based networks and short-range networks. In both cases latency is

very high (data takes a long time to reach the AFarCloud Servers), however allows the existence of

stand-alone remote isolated networks which data can be collected. In either case, the gateway without

the backhaul connection, either by design or due to backhaul connection failure, recognizes the

presence of the gathering mobile gateway on the UAV or vehicle/tractor, packets the data and off

loads the data. In a future UAV fly by or vehicle proximity, the mobile gateway signals that the

previously packet data was delivered successfully, and it can now be deleted safely from the internal

storage.

Data gathering and relaying

The establishment of a sensor network topology, either by deploying a closely grouped sensors with

protocols such as Zigbee or 6LoWPAN, or a loosely spaced LPWAN network, establishes the

supporting wireless protocols that allows the data to be transmitted from one place to another. Still,

the sensed data must be collected, possibly stored temporarily and finally delivered to the backend

services.

Page 176 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Data collection from end devices/nodes is half the equation since data can also flow from the

AFarCloud servers to the end-nodes to act over equipment (water pump, water valve, light…) either

based on operator command or through a decision from the DSS (Decision support system).

Short-range networks have symmetrical bidirectional communication, which means that the data rate

and range are equal in both directions: receiving and sending data. On the other end, LPWAN based

networks have some limitations since they were designed to be more efficient on one direction: For

example, on Sigfox, data from the gateways to each node is limited to 12 messages per day. Without

entering into too much details, LoRa range on the download link can be the same or lower than the

upload link range.

Independently of the wireless protocol used to communicate, if the end device is always on, it is ready

to receive commands at any time, but battery powered nodes must conserve energy and so are not

active and available for data command reception at any time. The standard solution for enabling the

reception of command data on a node that is saving power is to, when the node transmits data to the

gateway, it keeps its radio on for some time after the transmission (receive window) to allow the

gateway to relay any command(s) that are queued for the node.

The following selected higher-level protocols MQTT, MQTT-SN and CoAP all allow the data flow

between end devices and central services but mainly decouple the data transmission process from

the state and identification of the device. Decoupling the data flow from the device state by using the

above protocols allows to hold data temporally for a device until it becomes available and is ready to

consume/receive the data. There are also other protocols including AMQP (Advanced Message

Queuing Protocol) and Data Distribution Service (DDS)

A typical use case is a client subscribing to a subject, and given the right credentials appends data

into a time-series or relational database. In reality, this corresponds to a few lines of code and can be

authored with a wide range of components and languages

These are some of the most common protocols for data aggregation and relaying:

MQTT → Message Queue Telemetry Transport runs over TCP/IP and works by providing higher-level

protocol based on the topic publish-subscribe paradigm. A topic defines an item of information of

interest, for example Barn_Temperature. Any sensor that has data related to this information of

interest, publishes information on the topic independently of the availability and identification of the

subscribers. Subscribers to the topic receive the message from the topic automatically when the data

is available and depending on the quality of the service associated to the topic, data can be stored

until all subscribers have received the message. This allows to send data/commands to devices that

Page 177 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 subscribed to certain control topics but are normally asleep without any loss of data. MQTT is data

agnostic, and can send data of any encoding or encryption, typically any data in binary format.

MQTT has several message types where Publish, Subscribe and Unsubscribe are most central. A

published message can also be retained on a channel, meaning that a subscriber will receive the

most recent available message, when subscribing later than when message was actually published.

There is another special message type called Last Will and Testament (LWT) to notify other clients

about an ungracefully disconnected client. It allows publishing clients to send information like “I’m out

of range”, or “My battery has run out” which is triggered after a reasonable timeout. This is convenient

for maintenance on battery-powered devices.

There is no security built into MQTT as such, while both payload encryption as well as channel

encryption in the TCP connection using SSL/TLS.

MQTT-SN → MQTT for Sensor Networks works the same way as standard MQTT but is streamlined

to be more efficient for sensor networks that normally use more constrained devices. MQTT-SN uses

UDP instead of TCP and has features that allow the efficient use of the underlying UDP protocol. It

doesn’t run over the TCP/IP stack, but rather over serial e.g., using Bluetooth, Zigbee and needs a

bridge to convert into proper MQTT messages.

CoAP → Constrained Application Protocol uses the Client/Server model over UDP, where the server

is the end-node, and the client is the consumer (The AFarCloud Servers). CoAP allows the client to

discover services from server (the device with the sensors) and monitor changes by a process called

observing where the client requests to be notified of changes of an observed client resource.

While MQTT and MQTT-SN require the deployment of a MQTT Broker (server), it allows many-to-

many communication and supports the temporary storage of data destined for end devices that sleep,

CoAP on the other hand as a Server/Client protocol, only allows a one-to-one communication, and

support for sleeping end devices depends on the CoAP client implementation.

A sample block diagram related to data gathering, relaying and storage of measures collected by a

multi-hop WSN and integrated in a typical IoT architecture is depicted in the figure below:

Page 178 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Figure 38: Collection of measures by a multi-hop WSN and integration in a typical IoT architecture

IoT devices, or so-called motes in the context of WSN, are equipped with sensors to sample

environmental parameters like temperature, humidity, pressure, visible light, etc. Data collected by

each device are then transmitted through the radio channel (e.g., Zigbee) to a central node called

sink; it’s the cluster-head in Cluster Tree topologies, or a particular device in mesh topologies

designated as message receiver of the overall network. It’s reasonable to provide sink motes with

long-range connectivity to reach cloud infrastructure too, thus acting as a Gateway. Sensor data

received by Gateway will be packed as MQTT messages and published on an MQTT queue read by

an application.

Page 179 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Annex 2. Data Definitions

Data definitions of the models used in the REST services and by the MQTT clients (publishers and

subscribers).

Definition Properties Type Format

Location latitude number double

longitude number double

altitude number double

Result value number float

uom string example: "http://qudt.org/vocab/unit#DegreeCelsius"

variance number float

Observati

on

resourceId string example:

"urn:afc:AS04:environmentalObservations:TST:airTemperatureSen

sor0012"

observedPrope

rty

string example:

"http://environment.data.gov.au/def/property/air_temperature"

resultTime integ

er

int64 (Epoch time in seconds)

result ref: "#/definitions/Result"

Measurement sequenceNumber integer int64

location ref: "#/definitions/Location"

observation ref: "#/definitions/Observation"

Example:

{

 "sequenceNumber": 123,

 "location": {

 "latitude": 45.45123,

 "longitude": 25.25456,

 "altitude": 2.10789

Page 180 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 },

 "observation": {

 "resourceId":

"urn:afc:AS04:environmentalObservations:TST:airTemperatureSensor0012",

 "observedProperty":

"http://environment.data.gov.au/def/property/air_temperature",

 "resultTime": 1558086914,

 "result": {

 "value": 3.2,

 "uom": "http://qudt.org/vocab/unit#DegreeCelsius",

 "variance": 0

 }

 }

}

Acceleration accX number float

accY number float

accZ number float

Anomalies locationAnomaly boolean

temperatureAnomaly boolean

distanceAnomaly boolean

activityAnomaly boolean

positionAnomaly boolean

Collar resourceId string example:

"urn:afc:AS06:livestockObservations:SENSO:collar0034"

location ref: "#/definitions/Location"

resultTime integer int64 (Epoch time in seconds)

resourceAlarm boolean

anomalies ref: "#/definitions/Anomalies"

acceleration ref: "#/definitions/Acceleration"

temperature number float

CollarData sequenceNumber integer int64

collar ref: "#/definitions/Collar"

Page 181 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 Example:

{

 "sequenceNumber": 123,

 "collar": {

 "resourceId": "urn:afc:AS06:livestockObservations:SENSO:collar0034",

 "location": {

 "latitude": 45.45123,

 "longitude": 25.25456,

 "altitude": 2.10789

 },

 "resultTime": 1558086914,

 "resourceAlarm": true,

 "anomalies": {

 "locationAnomaly": true,

 "temperatureAnomaly": true,

 "distanceAnomaly": true,

 "activityAnomaly": true,

 "positionAnomaly": true

 },

 "acceleration": {

 "accX": 0,

 "accY": 0,

 "accZ": 0

 },

 "temperature": 36.5

 }

}

CollarDataList sequenceNumber integer int64

collars array items: ref: "#/definitions/Collar"

Example:

{

 "sequenceNumber": 123,

 "collars": [

 {

 "resourceId": "urn:afc:AS06:livestockObservations:SENSO:collar0034",

 "location": {

 "latitude": 45.45123,

 "longitude": 25.25456,

 "altitude": 2.10789

 },

 "resultTime": 1558086914,

 "resourceAlarm": true,

 "anomalies": {

 "locationAnomaly": true,

 "temperatureAnomaly": true,

 "distanceAnomaly": true,

 "activityAnomaly": true,

 "positionAnomaly": true

 },

 "acceleration": {

 "accX": 0,

 "accY": 0,

Page 182 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 "accZ": 0

 },

 "temperature": 36.5

 }

]

}

SensorDataList resourceId String example:

"urn:afc:AS04:droneMissions:BEV:drone001"

sequenceNumber Integer int64

location ref: "#/definitions/Location"

observations Array items: ref: "#/definitions/Observation"

Example:

{

 "resourceId": "urn:afc:AS04:droneMissions:BEV:drone001",

 "sequenceNumber": 123,

 "location": {

 "latitude": 45.45123,

 "longitude": 25.25456,

 "altitude": 2.10789

 },

 "observations": [

 {

 "resourceId":

"urn:afc:AS04:environmentalObservations:TST:airTemperatureSensor0012",

 "observedProperty":

"http://environment.data.gov.au/def/property/air_temperature",

 "resultTime": 1558086914,

 "result": {

 "value": 3.2,

 "uom": "http://qudt.org/vocab/unit#DegreeCelsius",

 "variance": 0

 }

 }

]

}

SamplingPeri

od

resourceId String example:

“urn:afc:AS04:environmentalObservations:TST:airTemperatureS

ensor0012”

sequenceNum

ber

integ

er

int64

samplingRate integ

er

int32 (in minutes?)

Example:

Page 183 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 {

 "resourceId":

"urn:afc:AS04:environmentalObservations:TST:airTemperatureSensor0012",

 "sequenceNumber": 123,

 "samplingRate": 20

}

Definition Properties Type Format

LocDimRegion latitude number double

longitude number double

width number double

length number double

Region resourceId string enum:

- Weed

- DeadPlant

- WaterStress

resultTime integer int64 (Epoch time in seconds)

locationDimension ref: "#/definitions/LocDimRegion"

RegionData sequenceNumber integer int64

Region ref: "#/definitions/ Region "

Example:

{

 "sequenceNumber": 123,

 "region": {

 "resourceId": "Weed",

 "resultTime": 1558086914,

 "locationDimension": {

 "latitude": 37.392529,

 "longitude": -5.994072,

 "width": 2.38,

 "length": 1.25

 }

 }

}

Page 184 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 RegionList sequenceNumber integer int64

regions array items: ref: "#/definitions/ Region"

Example:

{

 "sequenceNumber": 123,

 "regions": [

 {

 "resourceId": "Weed",

 "resultTime": 1558086914,

 "locationDimension": {

 "latitude": 37.392529,

 "longitude": -5.994072,

 "width": 2.38,

 "length": 1.25

 },

 {

 "resourceId": "DeadPlant",

 "resultTime": 1558086920,

 "locationDimension": {

 "latitude": 37.393529,

 "longitude": -5.995072,

 "width": 1.38,

 "length": 1.42

 }

]

}

Page 185 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Annex 3. Scenario Functionalities (D7.1)

ID FUNCTIONALITY DESCRIPTION

F1 Monitor environment: temperature (ambient, and the plant), wind, and weather forecast.

F2 DSS for deciding about if it will be frost or not.

F3 Detection of cereals nutrients composition (energy, protein and humidity analysis)

F4 Using DSS take decision regarding when and where to harvest

F5 Monitor NKP (sensors or imagery)

F6 Measure the needs of fertilization with high spatial precision

F7 DDS for decision about when to fertilize

F8 Outdoor livestock location tracking

F9 Detection of livestock heat

F10 Detection of livestock calving

F11 Detection of livestock rumination and eating

F12 Determination of livestock growth rate

F13 Inference of the livestock habits patterns for health and reproduction

F14 Measure field water content/vigour

F15 Measure water stress

F16 DSS for decision about how much water

F17 Automatic actuation on rooftop (open, close)

F18 monitor greenhouse temperature and humidity

F19 Using actuators, irrigate with correct amount and location

F20 Detect plant illness (imaginary near infrared)

F21 Monitor Gases

F22 NIR silage analysis

F23 Livestock indoor positioning

F24 Livestock identification

Page 186 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 F25 Nutrition monitoring through rumen scanning

F26 Extract and analyze data from milky robots

F27 Livestock digestion monitoring

F28 Fleet management: tracking of farm vehicles

Page 187 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

Annex 4. User Requirements (D2.1)

ID REQUIREMENT DESCRIPTION

UR1 Domain specific decision support systems (DSS) are desired by the end-users. Everything from a

specific process to a larger process such as dairy supply chains.

UR2 AFarCloud solutions should be compatible with ISOBUS tractors, and other equipment in a farm.

Many farms have already well-functioning equipment, which cannot be omitted.

UR3 The system should be secure for workers driving or using the machinery.

UR4 The system should offer user-friendly solutions e.g., specialized HMI. Remember also that the

environment is specific (hazardous, dusty, etc.).

UR5 The system should offer vehicle information (e.g., maintenance parameters, distance driven,

operational hours, etc.)

UR6 The system should allow certain degree of automation in daily inspection tasks in order to reduce

time and costs.

UR7 AFarCloud should be interoperable with the current systems in the farm.

UR8 Communication is important and sometimes a challenge in rural locations. Thus, different

communication solutions, which provide a redundant solution is important.

UR9 The system should provide support to process NDVI as an agricultural index.

UR10 The system should be able to visualize information related to crops and livestock that allow farmers

to diagnose current situation in the farm, predict future diseases or problems and make decisions.

UR11 The Hyperspectral image system should have highly accuracy. The type and quality of data must be

discussed with the end-users before deployment (important measures are: grass height, illumination

conditions, spectral data, etc.)

UR12 Weather, and other environmental data are important for the DSS.

UR13 Offer Environment footprint calculation (EFC), a solution that estimates environmental impact of the

production for a single product.

UR14 Farm size distribution, production farm types of each class and common practices in different classes

are required to improve current, and develop new services.

UR15 The system should provide information for Phenological status, disease/pest diagnosis of the crops,

taking care to an extent of each crop specific needs.

Page 188 of 188

Title: D2.2 Architecture Requirements and Definition

Status: Final

Dissemination level: PU (Public)

 UR16 The system should detect weeds in cereals and grass.

UR17 The system should help to know the precise moments of harvesting of both maize and grass

UR18 The system could acquire real-time information about crops including gravimetry, NPK, humidity,

temperature and control of pesticides, temperature, load and cycle detection, use of water,

illumination conditions.

UR19 The system should help monitoring animal health and activity.

UR20 The system should allow in heat detection of animals.

UR21 The system should allow the measurement of ruminal conditions of dairy cows by non-invasive

methods. Also, the geometry of paralumbar fossa area for determining rumen fullness.

UR22 The system should be able to retrieve measured data from the rumen (pH, volatile fatty acids,

ammonia) and to compare them with other type of data (milk production, milk quality, time of feeding

and rumination).

UR23 The system should allow knowing the reproduction rates of cows.

UR24 The system should allow locating animals at any time.

UR25 The system should allow prediction the calving dates of animals. A DSS may be needed in this case.

UR26 The system must be able to detect animals that may pose a threat during harvest (deer, rabbits) or

farm animals (wild boar). The former group can destroy the equipment, contaminate the crops, strass

the livestock, etc. The latter group can be a great danger to the livestock, since attacking the livestock

is part of their behaviours.

UR27 The system should be able to retrieve measured data from the rumen (pH, volatile fatty acids,

ammonia) and to compare them with other type of data (milk production, milk quality, time of feeding

and rumination).

UR28 The system should be able to identify livestock individually, as well as provide information about

parameters such as position/tracking and location or battery lifetime for the tracking functionalities.

UR29 The system must provide real-time nutrient analysis for the help of ration mixing; at least dry matter

and protein content are needed; other parameters give additional value.

UR30 The system should provide support for radiation frost detection and leaf temperatures.

UR31 The system must acquire real-time information about the grapes, mainly soil humidity, vigour and

water stress to allow watering optimization and water flow information.

UR32 The system should be able to obtain information from leaves so health information can be inferred,

and a classification can be established.

