

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (public)

 Deliverable D7.2 Verification and
validation methods

WP7

Page 2 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

Document information
Project Identifier ECSEL-2017-783221

Project Acronym AFarCloud

Project Full Name Aggregate Farming in the Cloud

Document Version 11

Planned Delivery Date 30/4/2019

Actual Delivery Date 15/5/2019

Deliverable Name D7.2

Work Package 7

Task 7.2

Document Type Report

Dissemination level Public

Abstract This document describes the integration and verification

methodology and the overall validation plan that will serve as the

point of reference during the development, integration and

demonstration of the AFarCloud components and overall

platform.

Document History
Version Date Contributing

partner

Contribution

1 15/10/2018 INTRA ToC

2 25/11/2018 INTRA 1st Draft

3 28/01/2019 INTRA,

Tecnalia,

UPM

2nd Draft

4 25/02/2019 INTRA, UPM 3rd Draft

5 19/3/2019 UPM Comments to 3rd Draft

6 20/3/2019 INTRA Integration of comments

7 19/4/2019 INTRA Pre-final Draft

8 24/4/2019 AIT Review and contribution

9 25/4/2019 BEV Review

10 26/4/2019 UPM Review and contribution

11 29/4/2019 INTRA Final

Page 3 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

Document Contributors
Partner name Partner member e-Mail Skype ID/Phone

number

Intrasoft

International

14 Theofanis.Orphanoudakis@intrasoft-

intl.com
thorphan

Intrasoft

International

14 Dimitrios.Skias@intrasoft-intl.com dimskias

Tecnalia 3 belen.martinez@tecnalia.com

Tecnalia 3 Leire.Orue-

Echevarria@tecnalia.com

Tecnalia 3 sonia.bilbao@tecnalia.com

UPM 1 Jesus.rodriguezm@upm.es j_rodri_mo

UPM 1 mv.beltran@upm.es

UPM 1 gregorio.rubio@upm.es

UPM 1 lourdes.lopez@upm.es

UPM 1 vicente.hernandez@upm.es

UPM 1 jf.martinez@upm.es

UPM 1 pedro.castillejo@upm.es

HUA 58 vdalakas@hua.gr vdalakas

HUA 58 tsadimas@hua.gr

AIT 15 erwin.kristen@ait.ac.at

BEV 23 dario.pedro@beyond-vision.pt

SINTEF 26 mariann.merz@sintef.no +47 93059358

SINTEF 26 gorm.johansen@sintef.no +47 92228551

SENSOWAVE 8 candres@sensowave.com

mailto:Jesus.rodriguezm@upm.es

Page 4 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

Table of Contents

Table of Contents ... 4

List of Figures ... 6

List of Tables .. 7

Definitions and Acronyms ... 8

1. Introduction .. 11

1.1. Scope of the document ... 11

1.2. Structure of the document ... 11

2. Design, development and integration methodology .. 12

2.1. AFarCloud project strategy ... 12

2.2. Methodological framework for complex system development ... 15

2.3. Terms and definitions ... 15

3. Integration and verification plan ... 17

3.1. Overall Methodology ... 17

3.1.1. Continuous Integration (CI) principles .. 17

3.1.2. Test Levels .. 19

3.2. Product backlog, development and integration ... 19

3.3. Integration phases and time plan .. 30

3.3.1. Software components testing procedure .. 32

4. Validation strategy ... 33

4.1. Objectives and overall approach ... 33

4.1.1. Key Performance Indicators ... 34

4.1.2. Security Assessment Process ... 36

4.2. Release plans ... 40

5. Technologies, tools and guidelines .. 41

5.1. Integration guidelines .. 41

5.1.1. Design Patterns ... 41

5.1.2. Code comments and documentation ... 41

5.1.2.1. OpenAPI specification .. 42

5.1.3. Programming languages and Software architecture .. 42

5.1.4. Interfaces and Data Models ... 42

Page 5 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

5.1.5. Unit Testing and Source commits .. 43

5.2. AFarCloud DevOps development environment and procedures 43

5.2.1. DevOps infrastructure set up ... 43

5.2.2. Version control and task management ... 46

5.2.2.1. Software repository .. 46

5.2.2.1. GitLab Integration guidelines .. 47

5.2.2.2. Tracking development .. 47

5.2.2.2.1. Version release... 48

5.2.3. Deployment management .. 48

5.2.3.1. Jenkins (automation server) ... 49

5.2.3.2. Cloud infrastructure .. 50

5.2.4. Infrastructure as code .. 50

5.2.4.1. Containers ... 51

5.2.1. Artefact repository ... 53

5.2.1.1. Nexus... 53

5.2.2. Proposed deployment and development conventions .. 53

5.2.2.1. Proposed Deployment .. 53

5.2.2.2. Naming conventions ... 54

6. Conclusions ... 54

7. References .. 55

8. Annexes .. 56

8.1. API description template ... 56

Page 6 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

List of Figures

Figure 1. AFarCloud demonstration-centric project strategy ... 13

Figure 2. AFarCloud detailed plan towards integration .. 14

Figure 3. AFarCloud architecture .. 22

Figure 4. Overall integration and release plan ... 30

Figure 5. Sprint vs. release planning ... 31

Figure 6. Deployment stages for testing .. 33

Figure 7 Security assessment process diagram (IEC62443) ... 38

Figure 8 SL_C to SL_T comparison overview .. 39

Figure 9. AFarCloud release phases ... 40

Figure 10. AFarCloud release planning ... 41

Figure 11. Envisioned stages for the development, integration and validation of the software

components to be implemented in AFarCloud. ... 44

Figure 12. Tools for version controlling, deployment and infrastructure in AFarCloud. 45

Figure 13: Continuous integration schema .. 46

Figure 14: GitLab pipeline schema.. 47

Figure 15. GitLab issues (adopted from GitLab https://docs.gitlab.com/ee/user/project/issues/) 48

Figure 16 – AFarCloud infrastructure for deployment .. 50

Figure 17: CI/CD schema ... 52

Page 7 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

List of Tables

Table 1: Definitions, Acronyms and Abbreviations .. 9

Table 2: Table of product backlog as defined in D7.1.. 21

Table 3. AfarCloud initial list of components ... 24

Table 4. Mapping of AfarCloud components to demonstrators .. 28

Table 5. Format of integration map ... 29

Table 6: AFarCloud Technical KPIs .. 34

Table 7: Level 1 and 2 KPI mapping ... 35

Page 8 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

Definitions and Acronyms

Acronym Definition Remark

CI
Continuous Integration

DevOps (Development and Operations)

AT-UC Austrian - Use Case

CoAP Constrained Application Protocol

CD Continuous Delivery

CSRS CyberSecurity Requirement Specification

CPS Cypher Physical Systems

DSS Decision Support System

DoWA Description of Work

FMVEA Failure Mode and Vulnerability Effect Analysis

GIS Geographic Information System

GNSS Global Navigation Satellite System

IT Information Technology

IG Integration Guidelines

 International Software Testing Qualifications Board

JSON JavaScript Object Notation

KPI Key Performance Indicator

LeESS Large Scale Scrum

MQTT Message Queuing Telemetry Transport

MMT Mission Management Tool

Nordic CDX Nordic Cattle Data eXchange

OAS OpenAPI Specification

OS Operating System

Page 9 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

REST Representational State Transfer

SL Security Level

SL_A Security Level Archived

SL-C Security Level Capability

SL-T Security Level Target

SCM Source Code Management

SuC System under Consideration

SoS Systeme of Systems

TDD Test Driven Development

TARA Threat Analysis and Risk Assessment

UAV Unmanned Area Vehicle

UGV Unmanned Ground Vehicle

WSN Wireless Sensor Network

YAML Yet Another Markup Language

Table 1: Definitions, Acronyms and Abbreviations

Page 10 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

Executive summary
This document describes the integration and verification methodology and the overall validation plan

that will serve as the point of reference during the development, integration and demonstration of the

AFarCloud components and overall platform. The deliverable starts with the description of the design,

development and integration approach addressing both the background methodologies οf complex

system development and their practical implementation following the project structure. Then the

integration and verification plan is described addressing aspects like component development and

verification practices and overall plan towards system integration into local and holistic demonstrators.

After demonstrator integration the validation strategy that should be implemented into the different

demonstrators is included addressing relevant KPIs as well as security assessment practices. Finally,

detailed references and guidelines to technologies and tools that will be used for continuous

integration throughout the AFarCloud platform lifecycle are given.

Page 11 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

1. Introduction

In this section we make an overview of the scope and structure of the document.

1.1. Scope of the document

The purpose of this document is to describe the steps towards the integration of the AFarCloud

platform components, their verification and their validation during the demonstration phases of the

project.

The current document is the deliverable D7.2: Verification and validation methods and is the first

outcome of Task T7.2 Validation methodology and system integration of work package WP7:

Demonstrators Definition, Integration, Verification and Validation

1.2. Structure of the document

The rest of the document contains the following sections detailed below:

Section 2. Design, development and integration methodology

In this section we describe overall project approach and the basic principles οf complex system

development that apply to the AfarCloud platform development laying out the basic steps towards

system design, integration verification and validation.

Section 3. Integration and verification plan

In this section we describe the Integration and verification strategy and the initial plans for AfarCloud

platform releases (related to the plans for the development of the AfarCloud local and holistic

demonstrators) and the definition of the initial product backlog towards integration and demonstration.

Section 4. Validation strategy

In this section we describe the validation strategy and the initial identification of KPIs that will be used

to validate the main platform releases during periodic AfarCloud platform demonstrations.

Section 5. Technologies and tools

In this section we describe respective technologies and software development practices for the

AfarCloud platform components that will be developed and integrated as well as the tools to be used

for maintaining the AfarCloud platform code repository and issue management and development team

collaboration.

Page 12 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

2. Design, development and integration

methodology

The envisaged AFarCloud platform aims to promote novel precision farming solutions by providing

cyber physical systems (CPS), as well as a monitoring and sensing framework able to utilize new

autonomous robotics platforms and incorporating the legacy systems already deployed in the farms.

In this context the AFarCloud platform can be classified as a directed type of a Systems of Systems

(SoS) architecture. As such AFarCloud develops a set of innovative software components and

hardware adaptations to set the baseline for a new generation of cooperating CPS for smart farming.

In this deliverable we will not address specific hardware system development. Each hardware

component will be considered as confined in the work package where it is developed. Thus, design,

assembly and partial integration, verification and testing of hardware components needs to be

completed before integration in the demonstration platforms, during each AFarCloud platform

integration phase and hardware modules need to be initially considered functioning according to

specifications. Of course, during overall system integration and verification in the case of identified

errors in the expected way of operation of components developed within other work packages, these

will be reported and fed back to the relevant work package. The focus of this deliverable is on

AFarCloud platform integration in the form of intercommunicating and interoperable software

programmable components that functioning together support and implement the Farming-as-a-

Service AFarCloud concept.

2.1. AFarCloud project strategy

As mentioned above the AFarCloud platform ultimately represents a System-of-Systems, (SoS)

comprising cyber physical systems (CPS), as well as a monitoring and sensing framework. This

development will be performed by 60 different partners carrying out development work divided in 5

different technical work packages delivering their outputs to work package 7 for system integration,

validation and demonstration. Software component development in AFarCloud will follow an Agile

methodology, characterized by being iterative and incremental while focusing on a product mindset

instead of a project mindset.

To this end the final AFarCloud products are expected to be delivered, integrated, demonstrated and

validated through the planned 8 local and 3 holistic demonstrators. The AfarCloud project’s strategy

for demonstrators is bottom-up, in the sense that only the functionality (and SW components) that are

tested in local demonstrators will be deployed for the holistic demonstrator as shown in Figure 1.

Page 13 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

Figure 1. AFarCloud demonstration-centric project strategy

The goal is to select the local demonstrators’ functionalities that meet the subset of user requirements

that we would like to demonstrate at the holistic demonstrators. Here, a demonstrator functionality

(Func-Y.X) is a high-level functionality that can be implemented in a demonstrator (it’s not

technological) as for example “Measure the level of soil humidity”.

Within this strategy, a clear well-defined definition of each task in WP2 and WP7, beyond the technical

development of components in WP3-6, is necessary. As shown in Figure 2 below, WP2 is responsible

for delivering a set of user requirements (from the end-user perspective, not technological) and the

AfarCloud platform’s architecture (i.e., a definition of SW components and their dependencies). These

two inputs are taken by WP7 in order to enforce a demo-centric strategy for the project through the 8

local demonstrators and 3 holistic demonstrators.

Page 14 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

Figure 2. AFarCloud detailed plan towards integration

Within WP7, T7.1 will rely on demonstrator’s leaders to define the functionalities that should be

implemented in each local demonstrator. From here, a demonstrator plan will be designed for the

local and holistic demonstrators. The demonstrators planning will at least include the functionalities

and user requirements to be implemented in each demonstrator as well as the general logistics and

schedule for the holistic demonstrators (i.e., safe period for testing, necessary infrastructure HW, HW

providers, etc.). This means that the demonstrator planning will describe the general strategy of all

the demonstrators towards the success of the holistic demonstrators. As shown in Figure 2 the output

of this task will include among others a detailed list of functionalities in a pre-defined format to be

delivered to T7.2. In turn the overall demonstration planning together with the integration plan will be

taken by T7.3 and T7.4 as the foundation to elaborate their respective detailed demonstrators

planning for the crop management and livestock scenarios, respectively.

T7.2 will strongly coordinate with technical WP leaders (i.e., WP2-6) to translate the demonstrator

planning from T7.1 into a set of integration maps (one for each demonstrator, each year) that have

the ultimate goal to drive local demonstrators towards the holistic one, every year. To this end, the

functionalities of each demonstrator (provided by T7.1) will be translated to the required technologies

with the help of WP leaders. In turn, technologies will be mapped to the SW components of the

architecture, with the help of WP leaders too. Technologies and the corresponding SW/HW

components in the AfarCloud architecture will be selected based on the confidence level of WP

leaders about the SW/HW component being ready for the holistic demonstrator, that is meeting the

Page 15 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

schedule of the local demonstrator’s plan towards the holistic one. Integration maps will include the

partners providing the specific component of the architecture, the version of each component and

dependencies between components. T7.2 will provide the integration and verification planning that

will include at least the integration methodology (as described in Section 3 below), verification and

validation, general integration/verification/validation roadmap (that must be according to the general

demonstrator planning from T7.1), KPIs, integration maps, technologies and functionalities for each

demonstrator methodology (as described in Sections 4 and 5 below).

T7.3 and T7.4 will provide the detailed demonstrators strategy for the crop and livestock management

scenarios based on the demonstrators planning from T7.1 and the integration and verification

planning from T7.2. The crop management integration and validation planning from T7.3 and livestock

management integration and validation planning from T7.4 will include the detailed deployment

planning and schedule including integration activities and logistics as well as demo-specific limitations

and requirements for the crop management and livestock management scenarios, respectively.

2.2. Methodological framework for complex system

development

In terms of the AFarCloud core platform component development due the complex system

development nature of the AFarCloud project and the collaborative effort involving self-organizing and

cross-functional teams, developing components in parallel through the technical work packages of

the project, an Agile software development is envisaged. An empirical knowledge work

development/control framework, which was developed to serve Agile software development projects

is Scrum [1]. In Scrum a cross-functional self-managing Team develops a product in an iterative

incremental manner. Since in Scrum the emphasis is for one Team and not many Teams working

together, Large-Scale Scrum (LeSS) (and LeSS-Huge serving better more than 8 Teams, 8 being an

upper-limit empirical observation) has been proposed to operate Scrum at scale, applied to many

teams working together on the same product [2]. In many aspects the technical development in

AFarCloud will follow practices close to the principles of LeSS/Scaled Scrum, which will be reviewed

in the remainder of this section.

2.3. Terms and definitions

When adopting Scrum/LeSS, an accurate definition of the end Product is required first, since it will

affect the scope of the Product Backlog, who will be the Product Owner and the size (in teams) of

the Product [2],[3]. In the context of this deliverable the product refers to the AFarCloud platform that

will be demonstrated according to the selected functionality lists that will be adopted according to the

demonstration plan provided by T7.1. An initial plan for the selected functionalities, which will evolve

on a yearly basis is provided by T7.1, and the AFarCloud technical development is focusing on

Page 16 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

decomposing these lists into technologies and components that will be delivered by the technical

Workpackages and integrated on the local and holistic demonstrators to provide these functionalities.

Multiple teams building a single product work from a single Product Backlog that defines all of the

work to be done on the product. Product Backlog Items are not pre-assigned to the teams. The LeSS

Product Backlog is the same as in a one-team Scrum environment.

The Scrum team consists of three main roles; the Product Owner, the Scrum Master and the

Development Team.

The Product Owner is responsible for the overall product backlog i.e. the complete list of

functionalities that are required for the final demonstration of the AFarCloud platform. The Product

Owner is responsible for the content of the product backlog before each development iteration, as

well as the prioritization of the product backlog before each development iteration. The product owner

should also ensure that the development team understands what is expected from the features of the

backlog. Following the demo-centric approach of AFarCloud the Product Backlog shall be maintained

in the form of functionality lists maintained by the demonstrator leaders as described in section 2.1.

On the other hand, the Scrum Master is the person who owns the Scrum process. This person is

responsible to ensure that the team adheres to the Scrum theory, practices and rules and is the

facilitator of the Scrum events (meetings / reviews) as well as to remove any obstacles to the team

and enable the communication between the team members. In AFarCloud the Product Owner shall

be the Task 7.2 Leader.

Finally, the development team is the one who owns the software. It is self-organising, meaning that

no one can tell the development team, not even the scrum master, how to take the backlog of features

and turn them into increments of working software. The team is also cross-functional, consisting of

everyone and everything that they need to complete the development iteration and the overall product

and does not depend on anyone who is not part of the team. Its members do everything from coding

to testing and documenting while all members are equally responsible for the software quality, the

technical implementation of features driven by the storyboards and the delivery of the product

increment at every development iteration. In AFarCloud the development teams are represented by

the consortium member teams involved in the development of components of each Work package to

be contributed to the AFarCloud Product Backlog.

In LeSS Huge one additional role is introduced. Each Requirement Area has an Area Product Owner

who specializes in that area and focuses on its Area Product Backlog. The Product Owner may also

serve a double duty as an Area Product Owner for one area. Additionally, in LeSS Huge the Product

Owner groups every Product Backlog item under exactly one requirement category—its requirements

area leading to the generation of different views on the overall Product Backlog—called an Area

Backlog. The Area Backlogs are prioritized by an Area Product Owner who specializes in part of the

product. Each Requirement Area has several feature teams working from the Area Backlog. In

AFarCloud the Requirement Areas are represented by the technical Work package definitions

overseen by the project’s Technical Committee (i.e., WP leaders and the Project Coordinator).

According to the above methodology the Scrum team can create and use other artifacts like user

roles, workflow descriptions, user interface guidelines, storyboards, or user interface prototypes to

Page 17 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

complement the product backlog. In AFarCloud this is related to the maintenance of the architectural

maps, component list definitions, integration maps that include component interfaces and data flows

and the demonstrator plans that will determine the sprint planning as will described in more detail in

the following sections.

3. Integration and verification plan

3.1. Overall Methodology

In AFarCloud verification aims at guaranteeing that the components delivered by the technical Work

packages during partial system integration phases meets the set of design specifications defined

during the architectural specification phase and cover the respective items of the Product Backlog.

During intermediate development and partial system integration phases, verification procedures will

be developed. Such verification procedures should define specific test scenarios modelling or

simulating system components up to the complete AFarCloud platform and methods for evaluating

and analysing the modelling results in order to guarantee operation according to specifications.

AFarCloud adopts a DevOps approach for development, integration, testing and deployment. In

section 5.2, integration framework and tools are described. In addition, guidelines on adopting specific

tools for the purposes of AFarCloud are provided. Verification is tightly coupled to the AFarCloud

system development and integration methodology as described in the remainder of this section

3.1.1. Continuous Integration (CI) principles

Continuous Integration is a developer practice to keep a working system by small changes growing

the system by integrating frequently (usually at least daily) on the mainline by means of appropriate

tools supporting automation with lots of automated tests. This enables teams to work on shared code

and increases the visibility into the development and quality of the system. By referring to a developer

practice Continuous Integration (CI) typically expects developers to implement Test-driven

development (TDD) with constant refactoring practice. When a developer is unit-test-driving his code,

he ensures that his local copy is always working.

Applying the Scrum/LeSS methodology as described above in the context of CI the development

phase through which a verified prototype is delivered in Scrum is called Sprint. The sprint refers to a

development effort that is restricted to a specific duration, which is fixed in advance for each sprint

and is more or less equivalent to the definition of similar development events like hackathons etc. The

time allocated to the Sprint should be kept as is, while the scope of what will need to be done should

be adjusted. No changes can be made during the Sprint that will affect the goal that has been set out

for the specific sprint. Any changes that cannot go into the current sprint will enter the Backlog and

prioritized for the following sprints. In AFarCloud the periodic sprint events will be aligned to the yearly

demonstration phases as described in section 3.3, 6 sprint events shall be scheduled (3 for the first

year since not all technical development tasks start at M1, so that all tasks will have started delivering

to the product backlog) before each intermediate release to be used in the project demonstrators with

Page 18 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

a time interval between them every 1 to 2 months. The processes involved with sprint execution are

the following:

 Sprint planning occurring at the beginning of each Sprint. According to the LeSS framework

the Scrum definition of Sprint Planning is named Sprint Planning Two, which is a separate

meeting per team whereas a second level is added, named Sprint Planning One, which is a

meeting for all of the Teams together (potentially via representatives) where they decide which

team will work on which items.

 Sprint backlog definition is the list of work the development team must address during the

next sprint. The list is derived by the scrum team progressively selecting product backlog items

in priority order from the top of the product backlog until they feel they have enough work to

fill the sprint.

 Sprint Review held at the end of each sprint to review what the team has done during the

sprint and adjust the product backlog if necessary.

 Sprint Retrospective held at the end of each Sprint and before the next one. Its purpose is

to inspect how the team performed and create a plan for improvements for the next sprint.

Usually the team discusses on what went well, what went wrong and what could be done to

improve it.

AFarCloud will implement a sprint-based verification and validation i.e. the top-priority features

identified in the product backlog, which are drawn from the AFarCloud functionality lists and translated

into technical specifications, will be evaluated on a sprint-based timeframe.

 Each leader of a technical feature, which could involve multiple partners, will be responsible

of evaluating the feature. The reporting of the validation will be done in validation forms which

will contain all the technical features of the product backlog with an understandable and

measurable characterization, such as: feature not yet addressed, not working, partially

working, fully working. In case of a partially working feature, some analysis will need to be

provided to explain what is lacking. For fully working features and to facilitate the validation

process, WP7 partners strongly recommend technical partners to proceed to unitary testing

on a continuous integration system basis to verify continuously and automatically that new

developments did not break the previously working features. Moreover, each fully or partially

implemented feature will be documented, within the validation forms, indicating the required

steps to use the feature. The validation forms will be shared with WP7 leader to centralize and

track the validation progress.

 The sprint-wise verification and validation strategy requires a software release of the WP

results to be issued regularly (not necessarily in the end of every sprint) on the AFarCloud

repository. This accessible release will enable complementary evaluations performed by WP7

partners using the same and shared validation forms. These forms will enable to track the

validation progress where it is expected to see a list of features characterized as “not

addressed” features in the beginning of the project to a list of “fully working” features (at least

for) the highest priority features. The validation achieved by WP7 partners, containing details

and analysis of needed complementary work features, will be shared with technical WP

leaders to assist them completing the call into question features.

Page 19 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

3.1.2. Test Levels

According to the International Software Testing Qualifications Board’s (ISTQB’s) Agile Test Extension

[4] the following test levels can be defined:

Component testing (also known as unit, module or program testing) searches for defects in, and

verifies the function of, software modules programs, objects, classes, etc., that are separately

testable. It may be done in isolation from the rest of the system, depending of the context of the

development life cycle and the system. Stubs, drivers and simulators may be used. In the context of

AFarCloud platform development separate component tests will be planned and executed in each

technical Work package delivering components of the AFarCloud product backlog. Such tests will

facilitate the verification at component level (unit-test).

Integration testing tests interfaces between components, interactions with different parts of a system

and interfaces between systems. Systematic integration strategies may be based on system

architecture (such as top-down and bottom-up), functional tasks, transaction processing sequences

or some other aspect of the system or components. In order to ease fault isolation and detect defects

early, integration should normally be incremental rather than “big bang”. In AFarCloud integration

testing should be scheduled within sprint events.

System testing is concerned with the behaviour of a whole product. In system testing, the test

environment should correspond to the final target or production environment as much as possible in

order to minimize the risk of environment-specific failures not being found in testing. System testing

may include tests based on risks and/or on requirements specifications, business processes, use

cases, or other high-level text descriptions or models of system behaviour, interactions with the

operating system, and system resources. In AFarCloud this level of testing should be scheduled

during product releases and is expected to be facilitated by the AFarCloud demonstrators.

Acceptance testing aims to establish confidence in the system, parts of the system or specific non-

functional characteristics of the system. It is often the responsibility of the customers or users of a

system; other stakeholders may be involved as well. Finding defects is not the main focus in

acceptance testing. Acceptance testing may assess the system’s readiness for deployment and use,

although it is not necessarily the final level of testing. In AFarCloud this level of testing is not foreseen,

since commercialization of the AFarCloud platform is not expected within the project timeframe and

only final product validation during AFarCloud demonstrators is planned.

3.2. Product backlog, development and integration

The AFarCloud Product Backlog contains the list of features and tasks and will be the point of

reference for the Sprint iteration planning. The backlog, as already explained will be mapped to

application scenarios, technologies and components to a level that specific application scenarios can

be reasonably assigned for the component. The items of the backlog are assigned to the partner(s)

responsible of completing the component. A tree structure is also used in some cases in order to

show dependencies with other tasks and help identify possible bottlenecks in the planning. An initial

list of functionalities is provided in Table 2 below.

Page 20 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

ID FUNCTIONALITY DESCRIPTION Goal

F1
Monitor environment: temperature (ambient, and the plant), wind, and
weather forecast.

G1: Frost Effect/impact Reduction

F2 DSS for deciding about if it will be frost or not.

F3
Detection of cereals nutrients composition (energy, protein and humidity
analysis)

G2: Improve harvesting

F4 Using DSS take decision regarding when and where to harvest

F5 Monitor NKP (sensors or imagery)

G3: Optimize the amount of fertilization F6 Measure the needs of fertilization with high spatial precision

F7 DDS for decision about when to fertilize

F8 Outdoor livestock location tracking

G5: Improving the quality and the
productivity with respect to the animals’
well-fare, and meat/milk quality

F9 Detection of livestock heat

F10 Detection of livestock calving

F11 Detection of livestock rumination and eating

F12 Determination of livestock growth rate

F13 Inference of the livestock habits patterns for health and reproduction

F14 Measure field water content/vigour

G6: Reducing water waste and cost in
horticulture

F15 Measure water stress

F16 DSS for decision about how much water

F17 Automatic actuation on rooftop (open,close)

G7: Reducing water waste and cost in
greenhouse

F18 monitor greenhouse temperature and humidity

Page 21 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

F19 Using actuators, irrigate with correct amount and location

G6: Reducing water waste and cost in
horticulture

G7: Reducing water waste and cost in
greenhouse

F20 Detect plant illness (imaginary near infrared) G8: Plant disease detection

F21 Monitor Gases
G5: Improving the quality and the
productivity with respect to the animals’
well-fare, and meat/milk quality

F22 NIR silage analysis
G4: Achieve the best nutrition
components for feeding

F23 Livestock indoor positioning

G5: Improving the quality and the
productivity with respect to the animals’
well-fare, and meat/milk quality

F24 Livestock identification

F25 Nutrition monitoring through rumen scanning

F26 Extract and analyze data from milky robots

F27 Livestock digestion monitoring

F28 Fleet management: tracking of farm vehicles G2: Improve harvesting

Table 2: Table of product backlog as defined in D7.1

As described above to deliver the complete product backlog the AFarCloud teams must implement

the AFarCloud architecture as defined in WP2 (currently defined as shown in Figure 3) and develop

and integrate the respective components that will be designed and delivered by the AFarCloud

technical work packages.

Page 22 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

Figure 3. AFarCloud architecture

As described in section 2.1, AFarCloud will implement this architecture towards product realization.

Thus, the product backlog will be complemented by the list of component definitions and integration

maps that include component interfaces, communication services, data flows and the demonstrator

plans that will determine the sprint planning as will described in more detail in the following sections.

Thereinafter, Integration maps will be enhanced by APIs descriptions and by the respective data

models to be used. For that reason, a API description template has been created and presented in

section 8.1. Table 3, below, shows the current list of components planned to be delivered and

integrated towards delivering the AFarCloud platform in its final form. A yearly plan for delivering

AFarCloud components that address specific functionalities will be defined and following an

evolutionary approach. Table 5 shows the format of an integration map that will be used to define the

component integration plan to be used during integration phases to deliver operational systems to the

AFarCloud local and holistic demonstrators.

Page 23 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

WP2 - DDS
Semantic
Middleware

WP3 - Farm
Managemen
t System

WP4 - Environment characterization
WP5 - Sensors &
actuators

WP6

Cloud
Repositories

Mission
Management
Tool

Gateway Algorithms for pre-
processing

COMMUNICATION
/ GWs

UAS/DRONE

AFarCloud Data
Model

Decision
Support
System (T3.3) Data fusion server

SENSORS,
CAMERAS &
ACTUATORS AGV

Data Access
Manager

MMT -
Hierarchical
planning Knowledge extraction (crops)

Soil sensors
TRACTOR

Data Processing
and Fusion

MMT -
mobile MMT
GUI Knowledge extraction (livestock)

Environmental
sensors: Tº, wind,
humidity, etc

Human Intervention
SW

Cyber-security
Management

Report
Generator
(WP3) Cloud Resources Monitoring

Gas sensors

Semantic Query
System
Configuratio
n Footprint calculation proof of concept

NIR

Streaming Engine
Cyber
Security
Management

MQTT Broker IR camera

Missions
Manager

 MQTT Client Multispectral

Configuration
Manager

 REST Server TOF Camera

Images Data
Manager

 Cloud Resources Monitoring Visible Camera

Missions
Reporter

 Collars 4 cows

Environment
Reporter

 Actuators

Computer Vision
Platform

NTP device/
actuator for air
treatment in
greenhouse/ indoor
environment

DDS manager
HIGH-LEVEL
SOFTWARE

ISOBUS Gateway

Image Processing
software
(Computer Vision
Platform

Events Reporter

DDS proxy

Lorawan
Gateway

 Lorawan Server

Page 24 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

Table 3. AfarCloud initial list of components

Following the analysis in T7.1 the mapping of the above components to the AFarCloud local and

holistic demonstrators in order to fulfil the target functionalities during the first year of the project is

shown in Table 4 below.

Demonstrators
Involved

AFarCloud Component

 Name WP/ Task ID/ Version

AS01

Data Access Manager 2

Semantic Query 2

MQTT Broker 4

MQTT Client 4

REST Server 4

Cloud Resources Monitoring 4

Gateway 5

Environmental sensors: Tº, wind, humidity, etc 5

NIR 5

Visible Camera 5

UAS/DRONE (IMCS) 6

AS02

Images Data Manager 2

MQTT Broker 4

MQTT Client 4

REST Server 4

Cloud Resources Monitoring 4

Gateway 5

Environmental sensors: Tº, wind, humidity, etc 5

NIR 5

Visible Camera 5

UAS/DRONE (IMCS) 6

AS03

Data Access Manager 2

Semantic Query 2

Environment Reporter 2

Data Processing and Fusion 2

Images Data Manager 2

MMT 3

MMT Hierarchical Planning 3

MQTT Broker 4

MQTT Client 4

REST Server 4

Cloud Resources Monitoring 4

Page 25 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

Gateway 4

Footprint calculation proof of concept 4

 Data fusion server 4

COMMUNICATION/ GWs 5

Soil sensors 5

Multispectral 5

Collars 4 cows 5

UAS/DRONE 6

Human Intervention SW 6

AS04

Data Access Manager 2

Semantic Query 2

Lorawan Gateway 2

Lorawan Server 2

Environment Processing 2

Environment Reporter 2

Computer Vision Platform 2

MMT 3

MMT Hierarchical Planning 3

MQTT Broker 4

MQTT Client 4

REST Server 4

Cloud Resources Monitoring 4

Footprint calculation proof of concept 4

 Data fusion server 4

Knowledge extraction (crops) 4

Gateway 4

COMMUNICATION/ GWs 5

Soil sensors 5

NIR 5

IR camera 5

Multispectral 5

Visible Camera 5

Computer Vision Platform 5

UAS/DRONE 6

AS05

Data Access Manager 2

Semantic Query 2

Lorawan Gateway 2

Lorawan Server 2

Environment Processing 2

Environment Reporter 2

Computer Vision Platform 2

MMT 3

MQTT Broker 4

MQTT Client 4

Page 26 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

REST Server 4

Cloud Resources Monitoring 4

Data fusion server 4

Gateway 4

COMMUNICATION/ GWs 5

Soil sensors 5

NTP device/ actuator for air treatment in
greenhouse/ indoor environment

5

UAS/DRONE 6

TRACTOR 6

AS06

Data Access Manager 2

Semantic Query 2

Lorawan Gateway 2

Lorawan Server 2

Environment Processing 2

Environment Reporter 2

Computer Vision Platform 2

MQTT Broker 4

MQTT Client 4

REST Server 4

Cloud Resources Monitoring 4

Gateway 4

Collars 4 cows 5

COMMUNICATION/ GWs 5

UAS/DRONE 6

AS07

Data Access Manager 2

Semantic Query 2

Knowledge Extraction 4

Environment Processing 2

Environment Reporter 2

MQTT Broker 4

REST Server 4

MQTT Client 4

Cloud Resources Monitoring 4

Gateway 4

Environmental sensors 5

Collars 4 cows 5

COMMUNICATION/ GWs 5

AS08

Data Access Manager 2

Semantic Query 2

Lorawan Gateway 2

Lorawan Server 2

Page 27 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

Environment Processing 2

Environment Reporter 2

DSS 3

MQTT Broker 4

MQTT Client 4

REST Server 4

Cloud Resources Monitoring 4

Gateway 4

COMMUNICATION/ GWs 5

GAS sensors 5

AS09

Data Access Manager 2

Semantic Query 2

Environment Processing 2

Environment Reporter 2

MMT 3

MMT Hierarchical Planning 3

MMT mobile MMT GUI 3

DDS 3

Data Fusion Server 4

MQTT Broker 4

MQTT Client 4

REST Server 4

Cloud Resources Monitoring 4

Environmental effects 4

Gateway 4

Soil sensors 5

NIR 5

IR Camera 5

Multispectral 5

Visible Camera 5

Computer Vision Platform 5

TOF Camera 5

Collars 4 cows 5

COMMUNICATION/ GWs 5

AGV 6

Software 6

UAS/DRONΕ 6

AS10
Data Access Manager 2

Semantic Query 2

Page 28 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

Environment Processing 2

Environment Reporter 2

MQTT Broker 4

MQTT Client 4

REST Server 4

Cloud Resources Monitoring 4

Visible Camera 5

COMMUNICATION/ GWs 5

AS11

MQTT Broker 4

MQTT Client 4

REST Server 4

Gateway 4

Data Fusion Server 4

Cloud Resources Monitoring 4

NTP device/ actuator 5

Table 4. Mapping of AfarCloud components to demonstrators

Following the above mapping complete integration maps will be maintained throughout the integration

phases of the project to track the integration effort and progress in the format shown in Table 5 below.

Page 29 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

Demonstrator
Functionalities

Demonstrators
Involved

AFarCloud Component Functionality provided by the component + Special requirements/Dependencies Integration plan Release

 Name
WP/
Task

ID/
Version

DESCRIPTION

INPUT
(from
comp.
x, y,z)

IN Communication
interface(s)/service(s)

OUTPUT
(to
comp. x,
y,z)

OUT Communication
interface(s)/service(s)

Other
Dependencies

RESPONSIBLE
Partner

START DURATION M12: 1

Table 5. Format of integration map

Page 30 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

3.3. Integration phases and time plan

As described above the project will evolve through discrete phases that involve:

 Continuous Integration implementing DevOps procedures that will be described in the

following sections

 Partial integration and verification events before demonstrator integration (sprint events)

 Validation of intermediate releases at demonstration sites

Thus, the overall planning of the above-mentioned phases includes the integration, verification and

validation steps as described above. A graphical representation of the integration, verification and

validation methodology is shown in Figure 4 below. The time plan for each phase will be defined well

before each demonstration event and the integration results will be collected and reported in periodic

reports.

Figure 4. Overall integration and release plan

As shown in Figure 5 before each sprint and during the sprint planning event held at the beginning

of each sprint, the sprint scope is defined by selecting which elements of the product backlog should

enter the sprint’s backlog and therefore be implemented during the current sprint. A sprint planning

meeting will be held at the beginning of event in order to track the progress and solve any issues that

might arise. At the end of the sprint, the sprint review and sprint retrospective event takes place in

order to review the product increment as well as review how everything went and take actions for

improving the process. After that meeting, the sprint planning event is repeated to plan the next sprint

Product

backlog

Sprint event Sprint event Sprint event

RELEASE

Product backlog

Sprint event

DEMO

Demonstration planning

User stories + validation KPIs

Integration/Verification

VALIDATION

Phase 1 Phase 2 Phase 3

DevOps DevOps

…

…

…

…

Page 31 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

until the required milestones are met and the product increment reaches the envisioned AFarCloud

product.

Figure 5. Sprint vs. release planning

Release
Planning

Product
Backlog

Sprint
Backlog

AFarCloud
Release

Sprint
Review

Product
Refinement

Sprint
Planning

Sprint
Retrospective

Sprint
Event AFarCloud

Product
Increment

Page 32 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

3.3.1. Software components testing procedure

Testing activities of the software components are expected to be done before their deployment into

the holistic scenarios. Consequently, a procedure has been established to make sure that the

software components developed in the project are tested thoroughly, so that they can be deployed

onto the vehicles and devices that are mounting them with the guarantee that they will not produce

any kind of failure on them that will jeopardize those devices in any way. The procedure that has been

created works as follows:

1. Software components are first tested in the local premises and with the local equipment

of the partner that is developing them. In order to know how a software component to be

tested works with the ones supposed to interact with, the developers of the other software

components must provide a description of how their own components are to be

interfaced by the developed one, so there is a clear idea on how to interact with them.

2. When those components have fulfilled that stage, they will be moved to an abstract

laboratory, where a generic iteration of what a demonstrator will look like will be available.

This generic iteration will consist of: a) the Farm Management System, where all the high level

parts used for decision making, user interfaces or applications are contained as any other

component (DSS, MMT, etc.), b) the cloud infrastructure, composed by the Semantic

Middleware components and the cloud repository infrastructure and c) a simulation of the most

widespread hardware components that are going to be used in the project (WSN, collars, other

sensors, UGVs, UAVs). This simulation can be based on the software components used on

those devices running in several computers, or in the vehicles themselves if it is possible.

Management of this abstract laboratory and its testing activities will be closely linked to the

partner where they are located. Access to software and debugging can be done remotely

when required via programs like TeamViewer.

3. When testing activities are deemed as satisfactory in the abstract laboratory are deemed

satisfactory, the tested software will be moved to partial demonstrators where its

performance and overall behaviour can be assessed before they are moved to the holistic,

final demonstrator. This will be the opportunity to install the component in the actual hardware

device that is going to use it in the holistic demonstrator used for the project evaluation. There

might be more than one partial demonstrator in use, in case it is required to test how

information is shared among several demonstrators.

4. Finally, all the components will be moved to the Holistic demonstrator. The last debugging

works and simulations will be done there.

The latter stages have been graphically summarized in Figure 6. Note that for the first integration

stage, components involved may vary greatly depending on what each partner is working on.

Page 33 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

Figure 6. Deployment stages for testing

4. Validation strategy

4.1. Objectives and overall approach

In AFarCloud validation is intended to ensure that the final AFarCloud platform delivered during each

planned release meets the operational needs of the AFarCloud users. A release-based validation

will be performed according to the Release Plan described in the following section.

 Storyboard based validation. The release-based validation will be performed by WP7 partners

assisted by technical WP leaders. A specific release validation form, containing all the user

requested functionalities, will be used to validate the AFarCloud platform during the holistic

demonstration phases. The release validation will produce a list of features not implemented,

partially implemented or fully implemented related to the components verified as fully working

listed in the product backlog and integration maps. The list of the incomplete features and an

analysis of the issue(s) will be presented to the technical partners to assist them solving the

problem(s).

 Documentation should be done per feature validated. The documentation per feature will be

collected and reviewed by demonstrator owners, which will follow a documentation template.

The missing documentation will be reported to the WP leaders of technical feature. The

documentation provided to WP leaders will serve as a basis for the validation process. After

each release-based validation, the validated documentation will be incorporated into platform

release package.

Page 34 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

 Validate the Key Performance Indicators (KPI’s). Each release will present a list of KPI’s that

will be validated using measurable characterization, such as: not reached, partially reached,

fully reached. A KPI validation report will be shared with technical partners to assist them

reaching the goal. A first list of KPIs is available in subsection 4.1.1.

4.1.1. Key Performance Indicators

A specific strategy is followed in the AFarCloud project in order to monitor the project progress and

the impact. Three levels of KPI were identified in the DoW:

 KPIs “level 1” is related to specific demonstrators.

 KPIs “level 2” is related to the AFarCloud overall platform.

 KPIs “level 3” measures the contribution for exploitation and the general innovation in modern

agriculture, a novel ecosystem.

Level 1 KPIs are mentioned in D.7.1 and are mainly Business KPIs for the demonstrators' planning.

KPI’s, related to each release of the AFarCloud platform, are defined by the WP7 partners a) based

on the contents of the Description of Work document as well as on the demonstration plans provided

by the rest of the Tasks in Work package 7 mainly D.7.1. These KPIs are “Level 2” KPIs or Technical.

Table 6: AFarCloud Technical KPIs

KPI ID Technical KPI Description

T1 Capacity Capacity is the size of the workload compared to available infrastructure.

T2 Periodicity The frequency of demand and supply activity

The amplitude of the demand and supply activity

T3 Reliability Mean Time Between Failures (MTBF) and Mean Time To Repair (MTTR).

For non-repairable components, it is expressed as Mean Time To Fail

(MTTF).

T4 Response Time Response Time gives a clear picture of the overall performance of the

cloud. It is crucial, as it has an impact on application performance and

availability.

T5 Scalability Degree to which the service or system can support a defined growth

scenario.

T6 Security The level of security clearance required to access service/data. (We

should consider open data)

Page 35 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

T7 Service/System

Availability

This metric is the percentage of time that a service or system is available.

It is the ratio of time a system or component is functional to the total

time it is required or expected to function.

An uptime of 99.9% means 42 minutes of downtime per month during

which you cannot provide service to your customers.

T8 Throughput The latency of transactions

The volume per unit of time throughput

An indicator of the workload efficiency

T9 Service and

Helpdesk

Level of support. Need of a service level agreement

T10 Cost per customer Estimation per year

Table 7 shows the mapping among Level 1 and 2 KPIs applied in each scenario.

Table 7: Level 1 and 2 KPI mapping

Scenario Business (Level 1 KPI) Technical (Level 2 KPI)

AS01: Demonstrator for
cranberry protection

KPI1; KPI2 T1; T3; T4; T5; T10

AS02: Silage / Cereal monitoring and
control

KPI2; KPI4; KPI10 T1; T4; T5;

AS03: Environmental monitoring for
sustainable crop production and livestock
welfare”

KPI2; KPI4; KPI6; KPI7 T1; T3; T4; T5; T7

AS04: Vineyards monitoring KPI1; KPI5 T2; T3; T4; T5; T7; T10

AS05: Farming based on permaculture
principles

KPI2; KPI3; KPI4; KPI5 T1; T2; T3; T4; T5; T7

AS06: Livestock health and movement KPI7; KPI8; KPI9; KPI10 T1; T3; T5; T7

AS07: Measurement of health status
through ruminal probes On Pasture
Monitoring

KPI7; KPI8 T1; T3; T5; T7

Page 36 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

AS08: Measurement of health status
through dairy robotics and gas monitoring”

KPI7 T1; T3; T5; T7

AS09: Cow nutrition management KPI1; KPI2; KPI10 T1; T3; T5; T7; T10

AS10: Sustainable livestock farming KPI1; KPI2; KPI10 T1; T3; T5; T7; T10

AS11: San Rossore Park
 KP1, KPI3, KPI4, KPI5,
KP6, KPI10

 T1; T3; T5; T7; T10

4.1.2. Security Assessment Process

The cybersecurity assessment reflects the actual achived security level (SL_A) of the Austrian – Use

Case (AT-UC) implementation. For detected security gaps, recommendations of security

countermeasures are given how to fulfil the necessary security levels.

In general, the AFarCloud architecture specification, defined in T2.2, will be assessed for

cybersecurity properties. For example, to identify both the security assets and the security weak points

of the overall design. The assessment is done in a general way to act as a base for security

assessments for a dedicated demonstrator architecture.

In detail, the AT-UC will be investigated for a concrete cyber security assessment. In the first-year

only a first and conceptual security analysis report will be worked out, based on the system description

of the AT-UC.

The security assessment process will be done according the security standard IEC62443.

4.1.2.1. Cybersecurity Assessment Process Flow

Figure 7 shows the cybersecurity process flow predetermined by the security standard IEC62443.

The standard descripts the main steps to perform the cybersecurity assessment of a given system.

1. The security assessment starts with a detailed description of the System under Consideration

(SuC). This step defines what shall be assessed and what are the system borders. This process

step must be done very carefully, because an extended system definition would produce

unnecessary analysis effort on the one-hand side. On the other hand-side, a narrowly limited

system definition will overlook important system parts which finally are never included in the

overall security analysis. In general, in the AT-UC the SuC includes all components beginning

with the sensors on the field and ends with functionalities in the cloud.

2. The detailed system description is the input for the high-level security analysis. Methods like

FMVEA (Failure Mode and Vulnerability Effect Analysis) and TARA (Threat Analysis and Risk

Assessment) are used to identify all possible security attack vectors in the given operation

environment.

The main assessment criteria are the following protection consideration to evaluate the necessary

security level SL0 to SL4

SL 0 No specific requirements or security protection necessary

Page 37 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

SL 1 Protection against casual or coincidental violation

SL 2
Protection against intentional violation using simple means with low

resources, generic skills, and low motivation

SL 3
Protection against intentional violation using sophisticated means with

moderate resources, IACS specific skills, and moderate motivation

SL 4
Protection against intentional violation using sophisticated means with

extended resources, IT specific skills, and high motivation

A Security level (SL) will be expressed as a security vector. The vector contains seven SL numbers

(0-4). Each number of the vector represents the selected security level number for the appropriate

Foundational Requirement (FR).

FR1 – IAC Identification and Authentication Control

FR2 – UC Use Control

FR3 – SI System Integrity

FR4 – DC Data Confidentiality

FR5 – RDF Restricted Data Flow

FR6 – TRE Timely Response to Events

FR7 – RA Resource Availability

3. Not all parts of the system must have the same security level. In this case the SuC is divided in

dedicated security zones and conduits, for a detailed analysis. The conduits define the data

communication paths between the diverse zones.

4. (Will be done after Year 1) The analysis output shows a positive assessment result when the

identified security risk can be tolerated by the asset owner. When not, a detailed cybersecurity

analysis for any zone and any conduit must be performed to identify the necessary cybersecurity

counter measures to harden the system.

5. (Will be done after Year 1) Finally, all new found security recommendations and new

requirements are documented as part of the CyberSecurity Requirement Specification (CSRS).

This report reflects only the current security status.

Page 38 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

Figure 7 Security assessment process diagram (IEC62443)

4.1.2.2. Asset Owner Approval

The asset owner (a person who contribute or use the system – e.g.: The security expert for the farm

plant) reviews the results of the security assessment. The security assessment expresses the security

capability of the system with the SL_C (Security Level Capability). In general, the SL_C documents

what the zone or the conduit can maintain with the actually implemented security measures. The SL-

C must be equal or better than the SL-T (Security Level Target). The comparison of SL-T and SL-C

can be expressed in a diagram like the following in Figure 8. This diagram is generated for each zone

and conduit, individually.

Page 39 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

Figure 8 SL_C to SL_T comparison overview

4.1.2.3. CyberSecurity Requirement Specification (CSRS)

The resulting CSRS defines the implementation of the given security requirements and mandatory

security counter measurements for the analyzed system (SuC), when a specific security level shall

be achieved.

A CSRS shall contain the following additional parts for a complete documentation:

 SuC description

 Operating environment assumptions

 Threat landscape

 Mandatory security functions

 Tolerable risk

 Regulatory requirements

A security assessment and analysis must be done periodically to react to new cybersecurity threats

early in time with an appropriate counter measure.

4.1.2.4. Security Assessment Data

Data Presentation concept

Overall system definition The system description is essential for a usefully and complete definition of the

System under Consideration (SuC)

Operating environment

assumptions, threat

landscape

The operation environment defines the borders of the analysis and descripts

unusable and unrealistic considerations or assumptions to keep the analysis

within a limit.

Cybersecurity attack

vectors

The possible cybersecurity attack vectors are identified from the operation

environment and by a FMVEA and TARA analysis.

Required security level A definition of the adequate security levels is essential for a usefully and

complete cybersecurity assessment.

Page 40 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

4.2. Release plans

The AFarCloud Release plan is made based on the evolution of the platform in three yearly stages

originally foreseen in which feature development will be undertaken. Three demonstrators will be set

up in a different country per year, in an incremental way, starting as early trials the first year and

ending with a final demonstrator where the platform, functionalities and devices will be validated. Each

release should demonstrate specific high-level features as defined during user requirements and

storyboard collection phase.

Figure 9. AFarCloud release phases

The AFarCloud demonstration strategy and planning delivered in D7.1 is gradual and incremental

from two perspectives. First, all platform components are tested in local demonstrators before moving

these components to the holistic demonstrator in a yearly basis. Second, demonstrator functionalities

are implemented gradually through the lifecycle of the project. Each year, based on the results from

the last years, the technologies supporting each functionality are improved and completed. Figure

10 shows the integration and validation planning of local demonstrators towards the holistic

demonstrator. Each year a similar gannt will be executed. The holistic demonstrators will deploy all

the functionalities that have been tested in local demonstrators and can be hosted by the holistic

demonstration’s farm.

Page 41 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

Figure 10. AFarCloud release planning

5. Technologies, tools and guidelines

5.1. Integration guidelines

Software and hardware development can be a very complex task. As a principle, it is highly

recommended for AFarCloud developers to apply Integration Guidelines (IG) during the

implementation of the required software and hardware components. AFarCloud developers, by

following these IG, they would have positive effect on the code quality and ultimately, the integration

testing of the developed product. IG defines coding standards to be followed, to ensure that the code

is readable and understandable by different developers involved in the process.

5.1.1. Design Patterns

Design patterns have been derived as general reusable solutions to commonly occurring problems

within a given context. They have been evolved by developers during a period of time, so that they

describe best practices in common diagnosed problems. AFarCloud developers are encouraged to

use design patterns, where applicable. Having a common standard terminology would significantly

enhance communication quality among the partners.

5.1.2. Code comments and documentation

On the same context, code documentation is highly recommended within AFarCloud. Among the

advantages one can be rewarded is the easier revision of developers' code in the future and at the

same time minimize the required time for any source code updates. Thus, code comments and clear

documentation benefits both the developer and the interested partners who wish to integrate with a

specific component in AFarCloud.

MS4 MS5 MS6

Development
Kick-off

AFarCloud
Release 1

Integration
Kick-off 1

Initial cloud
infrastructure

ready

Validation
Kick-off

Validation
Kick-off

Validation
Kick-off

AFarCloud
Release 2

Integration
kick-off 2

AFarCloud
Release 3

Integration
kick-off 3

CI/CD
Sprint planning

CI/CD
Sprint planning

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36

Page 42 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

5.1.2.1. OpenAPI specification

As the maintenance of API documents is getting a headache with the evolution of APIs functionality,

online API documentation alleviates this burden. This is now achieved through the OpenAPI

Specification (OAS).

OAS defines a standard, programming language-agnostic interface description for REST APIs, which

allows both humans and computers to discover and understand the capabilities of a service without

requiring access to source code, additional documentation, or inspection of network traffic. When

properly defined via OpenAPI, a consumer can understand and interact with the remote service with

a minimal amount of implementation logic. Similar to what interface descriptions have done for lower-

level programming, OAS in calling a service. OpenAPI documents describe an API's services and are

represented in either Yet Another Markup Language (YAML) or JSON formats. These documents

may either be produced and served statically or be generated dynamically from an application.

In AFarCloud, developers are urged to adopt Swagger for online documentation of the developed

APIs.

5.1.3. Programming languages and Software architecture

The applications and services that should be integrated and supported have vastly diverse

specifications and, therefore, requirements, resulting in the selection of a single programming

language as preferred to be an unrealistic consideration. AFarCloud has opted for orchestration at

the level of APIs that are technology agnostic.

RESTful APIs and publish subscribe client-server architectures (e.g MQTT) have been considered

across all the development activities of AFarCloud. By means of this approach, there is no

programming language lock-in, allowing all interested parties to integrate by simply respecting the

specifications of the APIs of interest.

REST relies on HTTP for the application of “Create”, “Read”, “Update” and “Delete” processes through

the “POST”, “GET”, “PUT” and “DELETE” HTTP methods respectively. AFarCloud adopts REST for

enacting synchronous communication among its components through common HTTP APIs and

pub/sub messaging for asynchronous communications, enabling microservices architectures.

5.1.4. Interfaces and Data Models

Interfaces and Data Models are elements of major importance for a successful integration process

among different components. Data models define classes, parameters and allowed methods whilst

Interfaces define the communication channel between software components. Interfaces are

specifying the information flow, the interacting entities and the way that this interaction is realized.

In AfarCloud where there is a significant number of partners and developers who would contribute in

the development process of the platform, it is an absolute necessity for every contributor to provide

the definition of Data Models and Interfaces for each component in a transparent and coherent

manner, to the extent possible. Furthermore, this approach is even more prominent given the fact that

likely a number of modifications over existing code might take place in the lifetime of AFarCloud

project, thus a number of modifications will have to be made in the respective Interfaces and Data

Page 43 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

Models. Therefore, in AFarCloud, given the great importance that descriptions of interfaces and data

models play in the Integration process, it is mandatory for the partners to use the API description

template that is described in section 8.1. Data models' descriptions shall be illustrated in a tabulated

format.

5.1.5. Unit Testing and Source commits

Source control appears as a greatly helpful solution for software development, especially for partners

or developers situated in geographically dispersed places who co-implementing software

components. Furthermore, Source control facilitates the integration process by communicating the

progress of the implementation to the interested parties. A good practice that is highly encouraged is

to code commit in a frequent, meaningful and systematic way. This would improve the reviewability

of the updated code by the interested partners. However, its benefits may be burdened by improper

use of the control elements offered by the source code management platform of the project.

Serious integration problems might get introduced when "broken" code is committed. Such

problematic behaviour will stall and ultimately put in jeopardy the integration process. Therefore, in

AFarCloud developers are required to thoroughly test their code before uploading it in the common

repository.

Lastly, a constructive approach for a newly implemented software component, should be to provide

software commits starting from basic API skeletons and gradually construct fully functional code

blocks.

5.2. AFarCloud DevOps development environment and

procedures

5.2.1. DevOps infrastructure set up

DevOps (Development and Operations) is a software development phrase.

AFarCloud software components will be developed by all the technology partners of the consortium.

In the context of the project, each technology provider will set up its own development environments,

but a shared software repository will be set up for the integration of all the components to be

implemented so that they can interoperate, communicate and work together in an integrated manner.

Finally, specific environments will be created for each pilot with the integration and customization of

the components that it uses.

DevOps is a set of practices that automate the processes between software development and IT

teams, in order that they can build, test, and release software faster and more reliably. The concept

of DevOps is founded on building a culture of collaboration between teams that historically functioned

in relative siloes. The promised benefits include increased trust, faster software releases, and ability

to solve critical issues quickly, and better manage unplanned work [5].

Page 44 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

In AFarCloud, DevOps philosophy and the corresponding approach will be used and applied internally

for the development and the operation (deployment and validation into the pilot’s environments) of

the software components in the project.

This section aims to present the DevOps tools planned to be used at project level for the development

and operation of AFarCloud’s implementations.

AFarCloud platform is composed of a set of software components that will be implemented by different

partners following different technologies. To overcome the integration challenges, AFarCloud will use

a DevOps based approach to be able to fully support the management of these implementations and

the planed releases. DevOps integrates development and operations into a single-minded entity [6]

with common goals: high-quality software, faster releases and improved users’ satisfaction.

DevOps also incorporates a number of agile principles, methods, and practices such as continuous

delivery, continuous integration, and collaboration[7].

For a successful implementation of a DevOps approach, it is required a set-up of a development and

delivery pipeline that consists of the stages an application goes through from development through

production, as shown in the figure below. This figure shows the environments that are envisioned in

AFarCloud covering the different development stages:

Figure 11. Envisioned stages for the development, integration and validation of the software components to be
implemented in AFarCloud.

 The Development stage aims to provide a development environment where to write and test code,
as well as to support collaborative environments (e.g., source control management, work-item
management, collaboration, unit testing, project planning). Possible tools to cover these are: Git
[8] as version control system, Jenkins Jenkins [9] to support continuous integration, Apache Maven
[10] to manage project's builds, reporting and documentation, and containerization technology to
have applications running in self-contained units that can be moved across platforms (e.g., Docker
[11][11]). Tools such as GitLab also offer its continuous integration and continuous deployment
pipeline.

 The Integration stage focuses mostly on compiling the code and performing the unit and integration
tests.

Page 45 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

 The Staging (pre-production) stage is where the Quality Assurance, user acceptance, and

development/testing teams do the actual testing. Possible tools to support this stage are: Jenkins,
Apache Maven for building and testing instructions, and xUnit as unit testing framework. Tools to
automate the creation of the infrastructure such as Chef [12] (a cloud infrastructure framework
that automates the building, deploying, and management of infrastructure) or Puppet [13] (for data
centre orchestration by automating configuration and management of machines and software) are
often used at this stage. The use of Containers technology 1 such as Docker or Kubernetes also
play an important role to quickly deploy and port environments.

 The Production Environment focuses on the management and provisioning of the environment that
the pilots and final users get to test. The tools mentioned above, such as Chef, Puppet, Docker or
Kubernetes are used in this stage.

In the following sections the different tools (shown in figure 2) and how they are planned to be used in

the context of AFarCloud are presented.

Figure 12. Tools for version controlling, deployment and infrastructure in AFarCloud.

AFarCloud is a considerably large project meaning that the AFarCloud platform consists of a large

number of individual components. Arguably, there might be a case where some partner won't be able

to comply to these CI/CD recommendations. It is acceptable to override these guidelines to an extent.

However, integration guidelines, especially the ones that fall into Integration Testing category and

refer to the testing objectives, testing reports etc. are mandatory and all AFarCloud partners are

obliged to comply to these directives.

1 A container is “a standard unit of software that packages up code and all its dependencies so the application
runs quickly and reliably from one computing environment to another” (source
https://www.docker.com/resources/what-container). This approach has the benefit of speeding up the testing
process and building large, scalable cloud applications.

https://www.docker.com/resources/what-container

Page 46 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

5.2.2. Version control and task management

5.2.2.1. Software repository

The technical work packages of AFarCloud will use GitLab [14] to manage source code and for

version control. GitLab is an open source code management (SCM) system based on Git [8] but

adding its own features covering for instance the DevOps pipeline.

The AFarCloud GitLab repository, hosted at TECNALIA, will store both private and public repositories.

The private repositories will be used to host the initial stages of the different components of the project

until they are mature enough to be deployed into the public domain. Besides, the private repositories

will be also used to store repositories required by the pilots to develop their pilot-oriented specific

source code and resources.

The different components of AFarCloud will become public, whenever appropriate, following the

AFarCloud Description of Work (DoW) commitments. All public source code will only be made public

once the licenses of the components have been agreed by all interested parties. Private repositories

will host the partners' proprietary implementations as established in the different individual and

collaborative dissemination strategies.

Gitlab, promotes conversational development to speed-up the coding activities, increase errors

visibility and establish proper, controlled CI/CD operations. To achieve this, Gitlab exposes the

conversational development status of a project using the following tabulated stages and calculated

values to calculate the project’s conversational development index (ConvDev Index), providing an

overview of the project adoption of Concurrent DevOps from planning to monitoring.

Gitlab promotes the term “pipeline” to describe sets of sequential continuous integration (CI) and

continuous delivery (CD) operations. In this course, CI pipelines include code building followed by

automated unit and integration tests. Next, CD pipelines deploy the code to different environment,

most usually for review, for actual user testing (staging phase) and, finally for production use. The

above is depicted in Figure 13.

Figure 13: Continuous integration schema

Page 47 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

5.2.2.1. GitLab Integration guidelines

Gitlab organizes the CI/CD pipelines by employing pipeline graphs as illustrated in the figure below.

These are defined and described via sets of simple YAML scripts (with a static filename, like as:

.gitlab-ci.yml) referred to as job files, where the various pipelines are organized in stages. Jobs are

executed by designated Gitlab runners.

Figure 14: GitLab pipeline schema

It is worth mentioning, however, that the aforementioned Gitlab runners refer to services that connect

to the project Gitlab instance -either the public or a private one- and listen for code changes so that

they can actually perform the source code building/testing/deploying. The code execution is

performed in sandbox Docker containers that are automatically generated by the Gitlab runners and

get automatically deleted when all the stages have been successfully completed.

As already mentioned, GitLab has been selected as the CI/CD framework to host the project

development. Some of the functionalities of the GitLab are tabulated below:

 Multiple projects are possible, grouped under groups and subgroups. So, the source code

implemented the components belonging in separate architectural blocks can be organized in

separate groups.

 Multiple private/public projects can be created, so during immature developments steps can be

taken privately, while making available more stable versions of software as open source.

 GitLab provides significant flexibility in developing teams’ collaboration. Different developing

teams can work in parallel on different branches, developing, testing and evaluating their features

at separate deployment environment without disturbing other teams. Then, code can be merged

when features are mature enough.

 A single branch can be deployed at different environments, separating staging from production

5.2.2.2. Tracking development

An Issue Tracking System is a software package to maintain and manage a list of issues, usually

within a collaborating team, until they are resolved. In software development environments, a problem

or “issue” can be a feature, a bug or any other request desired to be tracked towards its resolution.

Issue Tracking Systems usually support resource assignment, priority definition, time constraints,

project planning, etc.

Page 48 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

It is envisioned that the AFarCloud consortium will use a tool for managing the development project

of the AFarCloud platform comprising the different software components. While it is not yet decided

which tool could be used for this purpose, a good option could be the use of GitLab issues.

The issue functionality in GitLab has several goals such as proposing new features or functionalities,

reporting bugs, or foster discussions among developers on a certain topic or idea.

Figure 15. GitLab issues (adopted from GitLab https://docs.gitlab.com/ee/user/project/issues/)

A GitLab issue has at least the following fields to be completed:

 Issue description

 Assignee

 Milestone

 Due date

 Labels

5.2.2.2.1. Version release

The AFarCloud project release schedule will be as follows:

 Major version release at each milestone as originally planned in the AFarCloud Proposal
DoA.

 Minor version release following the alpha/Beta integration strategy proposed in the following
section

Versions are denoted using a standard triplet of integers: MAJOR.MINOR.INTERIM BUILD/PATCH
(e.g. 1.2.51). In between Major or Minor version, partners can generate any number of interim
releases.

5.2.3. Deployment management

In the context of AFarCloud one of the main objectives of the DevOps philosophy is to enhance the

flow between the development stage and the operation stage, to decrease the production times. There

are several ways of improvement such as agile methodologies and other approaches (i.e. Kaizen

https://docs.gitlab.com/ee/user/project/issues/

Page 49 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

[15], Lean [16], SixSigma [17]) but when the objective is to decrease the time of passing from

development to production, one of the main resources is the systematic automation of repetitive tasks.

There exist multiple approaches for automating tasks. In AFarCloud, it is envisioned to use Jenkins.

5.2.3.1. Jenkins (automation server)

Jenkins, supports the execution of post build tasks to enable the integration tests of one or more

artefact over a preconfigured environment such as a container. The usage of an automation server

such as Jenkins, provides a lot of advantages when sharing the information about the status of the

continuous integration tasks, both for the developers and for the users.

Main functionalities:

Jenkins provides many functionalities that can be extended through the more than 2000 already

available plugins. In this section, only those relevant for AFarCloud are described to support namely

the registration of a component, the continuous integration, debugging, modifying a component and

deleting it.

During the continuous integration stage, the automation server should support different development

strategies, such as the alfa-beta approach for integration complemented with manual testing. The

functionalities that will be needed for such a development strategy are:

 Creation of the automatization tasks to systematize the DevOps cycle and to accelerate the
incorporation of the changes and modifications into the production environment.

 Grouping the tasks into different groups to manage complex developments.

 Review the execution log so that mechanisms to identify the causes of a failure in the
automation task are in place.

 See the status of previous executions to analyse failures.

 Keep the results of past executions to see the details of the past executions i.e. when a failure
occurs.

 Notify the status of the executions for the automatic launching of some tasks.

 Recover the automation code from git, to include in configuration management, the integration
tasks.

 Delete projects.

Apart from these functionalities, using Maven or previously installed plugins, Jenkins will be able to

manage the infrastructure to execute the different components so that it can perform the integration

tests against them.

Integration points:

With respect to the integration technologies, in AFarCloud it is envisioned to use mainly the REST

API provided by Jenkins [18]. This API provides functionalities for:

 Recovering information from Jenkins

 Launching executions

 Creating/ Copying Jobs

Page 50 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

5.2.3.2. Cloud infrastructure

A cloud infrastructure is set up to support the AFarCloud DevOps development methodology in the
most automatic and efficient mode. Figure 16 depicts this infrastructure:

Figure 16 – AFarCloud infrastructure for deployment

In this infrastructure, the AFarCloud Instances Platform contains all the AFarCloud instances, that is,
the platform instances for all demonstrators. An AFarCloud Platform instance is a set of Docker
containers. Instances are automatically created by the AFarCloud Instances Platform that
automatically retrieves the platform components from GitLab. Each instance is configured based on
the needs and requirements of its demonstrator, which is established by a configurator partner in the
Consortium. Each demonstrator is hosted in each own cloud and automatically downloads and runs
its corresponding AFarCloud Instance from the AFarCloud Instances Platform. Demonstrator clouds
may potentially be grouped in cloud accounts per country, in line with the AFarCloud release plan
outlined in Figure 7. If possible, this design decision would make it easier to administrate demonstrator
clouds based on each country’s resources.

5.2.4. Infrastructure as code

The management of complex environments, such as the one foreseen in AfarCloud, where technical

incompatibilities are easy to arise pose a huge risk, are error – prone and time consuming. This is so

Page 51 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

because it may involve some of all the following activities: requesting and managing virtual machines,

configuring the access to those machines, their operating system, access to the components, and so

on.

To avoid these risk, AFarCloud proposes to use containers, whenever feasible. The containers

technology allows the definition of separate spaces (both at communication level and at file system

level) in the same virtual or physical machine, optimizing the computation resources.

At the same time, containers based technologies (such as Docker [11][11] or Warden[19]) allows the

explicit provision of the configuration of the containers: baseline operating system, packages included,

initial content, etc. This allows the instantiation of the same container with exactly the same initial

characteristics.

Furthermore, some containers technologies support the usage of the containers registry where

developed containers can be uploaded so that other team members can download and use /test them

with a small set of instructions.

5.2.4.1. Containers

Containerization refers to Operating System (OS)-level virtualization for deploying and running

distributed applications. Containerization is a lightweight alternative to a virtual machine that involves

encapsulating an application in a container with its own operating system. A container takes its

meaning from the logistics term, packaging container. When we refer to an application container, we

mean packaging software.

In AFarCloud, the selected containerization tool is the Docker open source tool. Adopting Docker will

allow AFarCloud to efficiently create virtual environments for integration tests and staging.

In AFarCloud it is envisioned to use Docker as containerization technology. These are the reasons

for this election:

 Open source technology

 Professional support if required

 It provides a public registry for the containers or we can create our own one.

 It has an extensive and growing users’ community.

Page 52 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

Figure 17: CI/CD schema

Main functionalities:

Docker provides a lot of functionalities. In this section, only those relevant for AFarCloud are going to

be described. For this, we will focus on the following DevOps stages: continuous integration,

publication, distribution and updating.

In AFarCloud it is envisioned to use the following capacities from Docker:

 Definition of the platform requirements for the components.

 Containers creation including both the component and the platform requirements for it.

 Configuration of the containers during its instantiation.

 Logs communication

 Containers instantiation

 Containers instances stopping and deleting

 Persistency definition

With respect to communication it is envisioned that AFarCloud project will use:

 Containers registration into the registry

 Project level registry creation

With respect to distribution, it is envisioned that AFarCloud project will use:

Page 53 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

 Download containers from the registry

With respect to update, it is envisioned that AFarCloud project will use:

 Download containers versions from the registry

Integration points:

With respect to integration technologies, it is envisioned that AFarCloud will use mainly the Maven

plugin for Docker [20]. This will allow the project to obtain the actions registry (log) of what is

happening in the different actions that supports and that are needed in the DevOps cycle:

 Build

 Run

 Stop

 Pushing into the registry

 Log

This registry integrates perfectly with Jenkins and allows us to analyse what has happened during the

execution of the different activities.

The proposed approach may seem complex however, this approach provides the project with an

editable configuration and adjustable to the needs of every project. All the files are stored with the

project and are accessible and modifiable by the team working on it.

5.2.1. Artefact repository

5.2.1.1. Nexus

In AFarCloud, Nexus will be used as an Artefact Repository. Nexus manages software "artefacts"

required for development. AfarCloud developers' builds can download dependencies from Nexus and

can publish artefacts to Nexus creating a way to share artifacts. With Nexus a developer can control

access to, and deployment of, every artefact from a single location.

Nexus is a free repository manager with universal support for popular components. It supports maven

artefacts but also Docker registries as the Docker repository format.

5.2.2. Proposed deployment and development conventions

5.2.2.1. Proposed Deployment

Along the development and integration lifecycle, a test and a production environment will support the

AFarCloud framework’s CI pipeline. Both environments will be identical, so their definition should

cover the both test and demonstration phases of the project. AFarCloud components will be organized

in groups mapped to the demonstrators that will use case their functionality. These groups will

represent their specific deployment options, considering contextual and software dependencies

among components. The proposed VM characteristics to host each of the above Test and Deployment

groups will be tailor-made given the specific requirements of the demonstrators. The requirements of

these VMs will be measured given the needs in vCPU, RAM and HDD (storage).

Page 54 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

5.2.2.2. Naming conventions

This section introduces the set of naming conventions for the source code, which will be.

eu.AFarCloud.modulename.componentname.subcomponentname.

Endpoints naming convention is as follows:

/AFarCloud/[group]/[componentname]/

Domain names will be for the development environment: ***.dev.AFarCloud.eu, while for the

production environment this will be the name that it will be used: ****.AFarCloud.eu

Source code files heading shall follow the following format:

/*

* Copyright (c) 201x <<Company_name>>.

* All rights reserved. This program and the accompanying materials

* are made available under the terms of the

* <<licensing_schema_to_be_decided>> which accompanies

* this distribution, and is available at

* <<link of the information of the selected licensing schema>>

*

* Contributors:

*

* <<Full Name of the contributor(s)>> <<(Organization Name(s))>>

**Initially developed in the context of AFarCloud EU project www.AFarCloud.eu

*/

6. Conclusions

In this deliverable we have outlined the development, integration and validation strategy and plan.

The document serves as an initial point of reference for the technical teams during the preparation of

the different AFarCloud platform releases and the work that will be carried out in the rest of the WP7

tasks up to M36 at the end of the project.

A realistic demo-centric methodology tailored to the AFarCloud project´s nature and complexity has

been described as well as the collaborative tools that are being set-up to support the technical

partners into successfully reaching the milestones as identified and detailed in the Integration Plan.

Page 55 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

A high-level planning has been provided, describing how to assign the initial project´s user

requirements to the different platform releases and demonstrators. The initial product backlog has

been described, and the objective to expand this during project execution to a detailed integration

roadmap mapping user stories, to detailed development tasks, their dependencies, responsibilities

estimated duration and timeline. The backlog will be a live list of functionalities and tasks always being

updated and containing all features to be developed while it will also serve as a tool for the validation

activities.

7. References

[1] K. Schwaber y J. Sutherland, «"The Scrum Guide",» Scrum.org, October 27, 2017.

[2] LeSS, “less.works,” 2014-2019. [Online]. Available: https://less.works/. [Accessed 29 04 2019].

[3] M. Cohn, « Succeeding with Agile: Software Development Using Scrum.,» Addison-Wesley,

Upper Saddle River, NJ, 2010.

[4] ISTQB, “istqb.org,” ISTQB, 2016. [Online]. Available: https://www.istqb.org/certification-path-

root/agile-tester-extension/agile-tester-extension-in-a-nutshell.html. [Accessed 29 04 2019].

[5] Atlassian, “What is DevOps?,” [Online]. Available: https://www.atlassian.com/devops.

[Accessed 11 11 2018].

[6] Aniket Deshpande, "’DevOps’ an Extension of Agile Methodology – How It will Impact QA?,"

Software Testing Help.

[7] New Relic, "“Navigating DevOps - What it is and why it matters to you and your business”," New

Relic, 2014.

[8] Git, "Git," [Online]. Available: https://git-scm.com/.

[9] Jenkins, "Jenkins," [Online]. Available: jenkins-ci.org. [Accessed 9 5 2017].

[10] Apache, "Apache Maven," [Online]. Available: maven.apache.org. [Accessed 09 05 2017].

[11] Docker, “Docker,” [Online]. Available: www.docker.com. [Accessed 09 05 2017].

[12] Chef, "Chef," [Online]. Available: www.chef.io. [Accessed 9 5 2017].

[13] Puppet Labs, "Puppet," [Online]. Available:

puppetlabs.com/puppet/puppet-open-source. [Accessed 2017 05 09].

Page 56 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

[14] GitLab, "GitLab," GitLab, [Online]. Available:

https://about.gitlab.com/.

[15] Wikipedia, “Kaizen-Wikipedia,” [Online]. Available:

https://en.wikipedia.org/wiki/Kaizen. [Accessed 15 05 2017].

[16] Wikipedia, "Lean-Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/Lean_software_development. [Accessed 15 05 2017].

[17] Wikipedia, "SixSigma - Wikipedia," [Online]. Available:

https://en.wikipedia.org/wiki/Six_Sigma. [Accessed 15 5 2017].

[18] Jenkins, "Jenkins API," [Online]. Available:

https://wiki.jenkins-ci.org/display/JENKINS/Remote+access+API. [Accessed 15 05 2017].

[19] Cloud Foundry, "Warden," [Online]. Available:

https://docs.cloudfoundry.org/concepts/architecture/warden.html. [Accessed 15 05 2017].

[20] Github, “Docker, Maven plugin,” [Online]. Available: https://github.com/fabric8io/docker-maven-

plugin. [Accessed 15 05 2017].

[21] GitLab, “GitLab convdev,” [Online]. Available:

https://docs.gitlab.com/ee/user/instance_statistics/convdev.html. [Accessed 29 04 2019].

[22] GitLab, “GitLab jobs,” [Online]. Available:

https://docs.gitlab.com/ee/ci/yaml/README.html#jobs. [Accessed 29 04 2019].

[23] GitLab, “GitLab pipelines,” [Online]. Available:

https://docs.gitlab.com/ee/ci/pipelines.html. [Accessed 29 04 2019].

8. Annexes

8.1. API description template

Title This field holds the description of the API

Page 57 of 57

Title: Deliverable D7.2 Verification and validation methods

Status: Final

Dissemination level: PU (Public)

URL This field holds the relative URL to the described API. For simplicit Root URL can be cut off from this

description and can be placed as a hyper text apove the API template

Method This field holds the type of the Method used

GET | POST | DELETE | PUT

URL Params This field holds the parameters (if exist). Separated based on the fields below into required and

optional.

Required:

id=[integer] parameter description

Optional:

image_id=[alphanumeric] parameter description

Data Params This field holds the body payload of a post request.

Required:

id=[integer] parameter description

Optional:

image_id=[alphanumeric] parameter description

Success response <What should the status code be on success and is there any returned data? This is

useful when people need to know what their callbacks should expect>

200

Content: { }

response description

Error response This field holds the list of all possible error responses. Doing that, helps prevent assumptions

of why the enpoint fails and saves a lot of time during the integration process.

404 response description

Sample call This field holds a possible sample call to the described endpoint in a curl-like format. Please,

choose the format wisely so that is clear and easy to read by the interested parties.

Notes This field holds any additional helpful info related to this endpoint.

